$3^{\text {rd }}$ International Young
 Mathematicians' Convention (IYMC) 2008 Team Contest - J unior levd

Team :

Problem 1.

Show that, for all positive real numbers p, q, r, s,

$$
\left(p^{2}+p+1\right)\left(q^{2}+q+1\right)\left(r^{2}+r+1\right)\left(s^{2}+s+1\right) \geq 81 p q r s
$$

$3^{\text {rd }}$ International Young Mathematicians' Convention (IYMC) 2008 Team Contest - J unior ledd

Team :

Problem 2.

In a troop of 2008, 12 are on patrol duty every night. Prove that it is impossible to draw up a schedule according to which every 2 are on duty together exactly once.

$3^{\text {rd }}$ International Young
 Mathematicians' Convention (IYMC) 2008 Team Contest - J unior levd

Team :

Problem 3.

Find all integers that satisfy the equation:

$$
x^{2}-2 x y+2 x-y+1=0
$$

\qquad

$3^{\text {rd }}$ International Young Mathematicians' Convention (IYMC) 2008 Team Contest - J unior levd

Team :

\qquad

Problem 4.

Markers are to be placed in some squares of a 4×4 chessboard.
(a) Place 7 markers so that if the markers on any two rows and any two columns are removed, at least one marker remains on the board.
(b) Prove that no matter how 6 markers are placed on the board, then it is always possible to choose two rows and two columns so that no markers remain on the board when all markers in these rows and columns are removed.
(a)

$3^{\text {rd }}$ International Young Mathematicians' Convention (IYMC) 2008 Team Contest - J unior levd

Team :

Problem 5.

From the centers of two "exterior" circles draw the tangents to the other circle. Prove that $A B=C D$.

$3^{\text {rd }}$ International Young Mathematicians' Convention (IYMC) 2008 Team Contest - J unior ledd

Team :

Problem 6.

Find all possible integers N satisfying the following properties:
(i) $\quad N$ has at least two prime divisors, and
(ii) $N=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}$, where d_{1}, d_{2}, d_{3} and d_{4} are the first four positive divisors of N.

