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Problem 1.
The diagonal BD of the inscribed quadrilateral ABCD is the
bisector of  ABC. Find the area of the quadrilateral if BD

10cmand ABC 60°.

Problem 2.

The function f(x) satisfies the equation D
f (2008*) + xf (2008™") = 2008

for all values of x. What is the value of f(2008)?

Problem 3.
Let a be the sum of the digits of an arbitrary 2008-digit multiple of 9. Let b be the
sum of the digits of a, and c be the sum of the digits of b. Determine c.

Problem 4.
A desk calendar consists of a regular dodecahedron with a -
different month on each of its twelve pentagonal faces. How / ‘
many essentially different ways are there of arranging the
months on the faces?
Problem 5. a
Find an integer x satisfying the following equation.
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where [x] denotes the greatest integer which is less than or equal to x.

Problem 6.
It’s given that 4x* +25y° +196z% =144 . Find the maximal possible value of
4x +5y—28z.

Problem 7.
Determine a constant k such that the polynomial

P(X, y,2) =X+ Y + 22+ k(x® + y? + 22)(X* + y* + 2°)
has the factor x+y+z.
Problem 8.

A given convex pentagon ABCDE has the property that the area of each of the five
triangles ABC, BCD, CDE, DEA and EAB is 1. Find the area of the pentagon.



