

Team :

Problem 1.

Prove that $\sqrt{4n+1} < \sqrt{n} + \sqrt{n+1} < \sqrt{4n+2}$, where *n* is a positive integer.

Team : _____

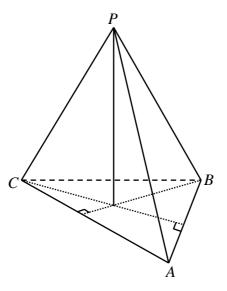
Problem 2.

Two players take turns choosing one number at a time (without replacement) from the set $\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$. The first player to obtain three numbers (out of three, four, or five) which sum to 0 wins. Does either player have a forced win?

Team : _____

Problem 3.

Let *n* be a positive integer and $x_1, x_2, ..., x_{n-1}$ and x_n be integers such that $x_1 + x_2 + \dots + x_n = 0$ and $x_1 x_2 \cdots x_n = n$.


Prove that *n* is a multiple of 4.

Team :

Problem 4.

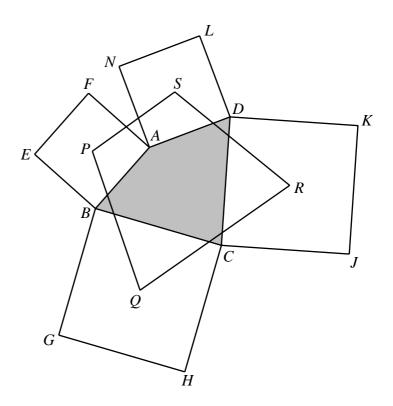
In the tetrahedron *PABC* the altitude from *P* passes through the orthocenter of triangle $\triangle ABC$. Find the ratio of the areas of triangles $\triangle PAB$ and $\triangle PAC$ if $PC=6-\sqrt{2}$, $PB=6+\sqrt{2}$, $BC=2\sqrt{19}$.

ANSWER :
$$\frac{S_{\Delta PAB}}{S_{\Delta PAC}} =$$

Team : _____

Problem 5.

Your calculator is not working properly—it cannot perform multiplications. But it can add (and subtract) and it can compute the reciprocal $\frac{1}{x}$ of any number *x*. Can you nevertheless use this defective calculator to multiply numbers?



Team :

Problem 6.

Given an arbitrary convex quadrilateral *ABCD* and the centers *P*, *Q*, *R*, *S* of the external squares on the sides *AB*, *BC*, *CD*, *DA*, respectively. Show that the area of

quadrilateral *PQRS* is $\frac{1}{2} \times QS \times QS$

