International Mathematics
TOURNAMENT OF THE TOWNS

Junior A-Level Paper Spring 2002.

1. Let a, b and c be the sides of a triangle. Prove that a® + b® + 3abc > ¢3.

2. A game is played on a 23 x 23 board. The first player controls two white chips which start in
the bottom-left and the top-right corners. The second player controls two black ones which
start in the bottom-right and the top-left corners. The players move alternately. In each
move, a player can move one of the chips under control to a vacant square which shares a
common side with its current location. The first player wins if the two white chips are located
on two squares sharing a common side. Can the second player prevent the first player from
winning?

3. Let E and F' be the respective midpoints of sides BC' and C'D of a convex quadrilateral
ABCD. Segments AE, AF and EF cut ABCD into four triangles whose areas are four
consecutive positive integers. Determine the maximal area of triangle BAD.

4. There are n lamps in a row, some of which are on. Every minute, all the lamps already on
will go off. Those which were off and were adjacent to exactly one lamp that was on will go
on. For which n can one find an initial configuration of which lamps are on, such that at least
one lamp will be on at any time?

5. An acute triangle was dissected by a straight cut into two pieces which are not necessarily
triangles. Then one of the pieces was dissected by a straight cut into two pieces, and so on.
After a few dissections, it turned out that all the pieces are triangles. Can all of them be
obtuse?

6. In a strictly increasing infinite sequence of positive integers, every term starting from the
2002-nd term divides the sum of all preceding terms. Prove that every term starting from
some term is equal to the sum of all preceding terms.

7. Some domino pieces are placed in a chain according to the standard rules. In each move, we
may remove a sub-chain with equal numbers at its ends, turn the whole sub-chain around,
and put it back in the same place. Prove that for every two legal chains formed from the
same pieces and having the same numbers at their ends, we can transform one to the other
in a finite number of moves.

Note: The problems are worth 4, 4, 6, 7, 7, 7 and 8 points respectively.



Solution to Junior A-Level Spring 2002
. Since b > ¢ — a, a® + b + 3abc > a® + (¢ — a)® + 3a(c — a)c = .

. Initially, the four chips determine a rectangle, with chips of the same colour at opposite
corners. After a move by the first player from such a position, there is no victory since the
two white chips are in different rows and different columns. Moreover, the four chips will
no longer determine a rectangle. However, the second player can restore this position in his
move. Thus there is no victory for the first player.

. Denote the area of the polygon P by [P]. Then
[BAD] = [ABEFD) — [BEFD] = [ABE] + [AEF] + [AFD] — 3[CEF].

In order to maximize [BAD|, CEF must have the smallest area among the four triangles
whose area are four consecutive integers. The maximum value of [BAD] is [CEF] + 1 +

[(CEF|+2+ [CEF)+3—-3|CEF] =6.

. Denote by 0 a lamp which off and by 1 a lamp which is on. The following diagram shows that
for n = 1 or 3, there are no initial configurations which lead to perpetual light.
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For even n, the initial configuration 1001100110... will work since it will alternate with
0110011001.... For odd n > 3, just add 010 to the previous configuration. It will alter-
nate with 100 since the third light will not go on because of the fourth. Hence this part will
alternate with 100, independent of the second part. In conclusion, perpetual light is possible
for all n except 1 and 3.

. A convex polygon is said to be bad if it has at least three non-obtuse angles. We claim that
whenever a bad polygon is dissected into two polygons by a straight cut, at least one of the two
new polygons is bad. This is because each end of the cut create at least one new non-obtuse
angle, so that the two poylgons between them have at least 3+2=>5 non-obtuse angles. By
the Pigeonhole Principle, one of them has at least 3 of them, and is bad. This justifies the
claim. Since we begin with an acute triangle, which is bad, we will always have at least one
bad polygon. When all the polygons are triangles, the bad one will not be obtuse.



6. Let the sequence be {a, } and let S,, denote the sum of all the terms up to but not including a,,.
For n > 2002, a,, is a divisor of S,,. Hence there exists a positive integer d,, such that a, = ‘3".

Then S,41 =S, +a, = (d”;ﬁ Ifd,.1 >d,+1, then a,.1 < S = a,, and this contradicts
the hypothesis that {a,} is strictly increasing. Hence {d,} is non decreasing for n > 2002.
However, this sequence cannot maintain a value k£ > 1 indefinitely as otherwise {5, } becomes
a geometric progression with common ratio k—:l starting from some term. However, k and
k 4 1 are relatively prime, and we can only divide the first term of the geometric progression
by k finitely many times. It follows that d,, = 1 eventually.

7. We use induction on the number n of domino pieces in the chain. For n = 1 and 2, the result
holds trivially. Consider the general case where the first number is a. Let the first piece in
the initial chain be (a,b) and that in the final chain be (a,c). If b = ¢, we can appeal to the
induction hypothesis. Assume therefore that b # c¢. Then the piece (a,b) is now further down
the chain. If it has been reversed to (b,a), we simply take the sub-chain from (a,c) to (b,a)
and reverse it. Then we appeal to the induction hypothesis. Assume therefore that (a, b) has
not been reversed. The proof will be complete if we can show that (a,b) can be reversed.
In the initial chain, let (d,e) be the first piece which does not appear after (a,b) in the final
chain. Let the piece before (d,e) in the initial chain be (f,d). Then this piece appears in the
final chain after (a,b), possibly reversed. On the other hand, the piece (d,e) appears in the
final chain before (a,b), also possibly reversed. We consider four possible configurations of
the final chain, and verify that in each case, (a,b) is reversed.

Case 1. (a,¢),...,(d,e),...,(a,b),...,(f,d),....

We reverse the sub-chain from (d, e) to (
Case 2. (a,¢),...,(d,e),...,(a,b),...(
We reverse the sub-chain from (d, e) to (
Case 3. (a,¢),...,(e,d),...,(a,b),...,(f,d
We reverse the sub chain from (d,h) to (f,d
Case 4. (a,¢),...,(e,d),...,(a,b),...,(d, f
We reverse the sub-chain from (d,7) to (j,d
(7,d) is the piece right before (d, f).

: Where (d, h) is the piece right after (e, d).

: Where (d,i) is the piece right after (e,d) and



International Mathematics
TOURNAMENT OF THE TOWNS

Senior A-Level Paper Spring 2002.

1. In triangle ABC, tan A, tan B and tan C' are integers. Find their values.

2. Does there exist a point A on the graph of y = 2% and a point B on the graph of y = 23+ |z|+1

such that the distance between A and B does not exceed ﬁ?

3. In a strictly increasing infinite sequence of positive integers, every term starting from the
2002-th term divides the sum of all preceding terms. Prove that every term starting from
some term is equal to the sum of all preceding terms.

4. The spectators are seated in a row with no empty places. Each is in a seat which does
not match the spectator’s ticket. An usher can order two spectators in adjacent seats to
trade places unless one of them is already seated correctly. Is it true that from any initial
arrangement, the usher can eventually place all the spectators in their correct seats?

5. Let AA;, BB, and C'C; be the altitudes of an acute triangle ABC'. Let O4, Op and O¢ be
the respective incentres of triangles AB,C, BAC7 and CAB;. Let Ty, Tg and T be the
points of tangency of the incircle of ABC with sides BC, C'A and AB respectively. Prove
that TAOcTgOAT-Op is an equilateral hexagon.

6. The 52 cards in a standard deck are arranged in a 13 x 4 array. If every two adjacent cards,
vertically or horizontally, have either the same suit or the same value, prove that all 13 cards
of the same suit are in the same row.

7. Do there exist irrational numbers a and b such that @ > 1, b > 1 and |[a™] # [b"] for any
positive integers m and n?

Note: The problems are worth 4, 4, 5, 5, 6, 7 and 8 points respectively.



Solution to Senior A-Level Spring 2002

1. First, note that we have

tan A 4+ tan B
1—tanAtan B

1
= A B)(1-
(tan A+ tan ) ( 1— tanAtanB)

tanA+tan B +tanC = tanA -+ tan B —

tan A + tan B
- _ tan Atan B
1 —tanAtan B an Atan

= tanAtan BtanC.

Let tan A = a, tan B = b and tan C' = ¢ where a, b and c are integers such that a+b4c = abc.
ABC' cannot be a right triangle. Suppose /A is obtuse. Then a is negative while b and ¢ are
positive. If b = ¢ =1, then abc = a < a+2 = a+b+c. Any increase in the values of b or ¢ will
increase that of a + b+ ¢ while decrease that of abc. It follows that ABC' is an acute triangle,
so that a, b and c are all positive. We may assume that a < b < ¢. Then abc = a+b+c < 3c,
so that ab < 3. We cannot have a = b = 1. Hence a = 1, b = 2 and ¢ = 3. Finally, the
diagram below shows a triangle ABC' with tan A =1, tan B = 2 and tan C' = 3.
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2. Consider the points A(a,a®) and B(b,b* + b+ 1) where a > b > 0. We wish to choose a and b
such that a — b < 555 while a® = b* + b+ 1. Let t=a—b>0. From (b+1t)>=0+b+1, we
have 3tb? — (1 —3t%)b— (1 —13) = 0. If t < 55, the constant term of this quadratic equation is
negative, so that it has one positive root and one negative root. Thus a and b can be chosen

so that AB < —

100

3. Let the sequence be {a,} and let S,, denote the sum of all the terms up to but not including a,,.

For n > 2002, a, is a divisor of S,,. Hence there exists a positive integer d,, such that a, = g—”.

Then S,41 =5, +a, = %271 Ifd,.1 >d,+1, then a,.1 < Sn = a,,, and this contradicts
the hypothesis that {a,} is strlctly increasing. Hence {d,} is non-decreasing for n > 2002.
However, this sequence cannot maintain a value k£ > 1 indefinitely as otherwise {S,,} becomes
a geometric progression with common ratio ﬁ starting from some term. However, k and
k + 1 are relatively prime, and we can only d1v1de the first term of the geometric progression
by k finitely many times. It follows that d,, = 1 eventually.



4. We use induction on the number n of spectators. The case n = 2 holds as a single switch
fixes the derangement. Suppose the result holds from 1 to n for some n > 1. Consider the
next case with n 4 1 spectators. Let Sy be the spectators with the ticket k. Suppose S, 11 is
in seat m for some m < n. If the spectators in seats m to n + 1 constitute a derangement
among themselves, we can appeal to the induction hypothesis. Otherwise, there exists a seat
¢ which is the first after seat m to be occupied by some S, where x # ¢ — 1. This means that
for m < k < ¥, seat k is occupied by S,_;. We perform a chain of switches from seat ¢ back
to seat m + 1, we still have a derangement since S is now in seat k + 2 for m < k < £. This
brings S, to seat m + 1 and we can now switch her with S,,,1, bringing the latter one seat
closer to her correct place. We can now repeat the above process until S, 1 is in seat n + 1,
and then appeal to the induction hypothesis.

5. Since BC'B,(C is cyclic, triangles ABC and AB;C; are similar. Tthe ratio of similarity is
cosa where o = /CAB, since AB; = ABcosa. Let O be the incentre and r the inradius of
ABC, and let T be the point of tangency of the incircle of AB;C; with AC. Now OTg = r,
OAT =rcosa, AT = ATgcosa, ATg = rcot § and

TTy = AT — AT = ATs(1 — cosa) = rcot% (2 sin? 3‘) = rsina.

Hence O Tg = vOAT? +TgT? = r. By symmetry, the other sides of the hexagon are also
equal to r.

A

6. If two adjacent cards are of the same suit, we say that there is a suit bond between them.
If they are of the same rank instead, we say that there is a rank bond between them. By
hypothesis, there is either a suit bond or a rank bond between two adjacent cards, and it
cannot be both since each card is unique within a deck. So we have twelve columns each
consisting of four horizontal bonds, and three rows each consisting of thirteen vertical bonds.
We claim that in each row and each column, the bonds are of the same type. Assuming to
the contrary that there are both suit bonds and rank bonds in a column. Then there is one
of each kind in two adjacent rows. Of the four cards in question, let the top two be the Ace
and King of Hearts. The bottom two are of the same rank. If this rank is Ace, then there is
no bond between the King of Heart and the card below. Similarly, this rank cannot be King.
Now not both cards at the bottom can be Hearts. Hence one of them will not have a bond
with the card above. This justifies our claim. Considering the types of bonds for each of the
three rows of vertical bonds, we have eight cases.



(i) All three rows are rank bonds. This yields the desired conclusion.

(ii) All three rows are suit bonds. This means that the 52 cards are in 13 groups of 4, with
cards in the same group being of the same suit. This is impossible since 13 is not a
multiple of 4.

(iii) Only the top and bottom rows are suit bonds. This means that we have 26 disjoint pairs
of cards of the same suit. This is impossible since 13 is not a multiple of 2.

(iv) Only the top and bottom rows are rank bonds. Consider the 13 inside pairs of cards in
the second and the third rows, with a suit bond between each pair. We may assume that
the first pair are Spades. There must be a first pair which are not Spades, say Hearts.
Consider first the subcase where the two outside cards in the first column are of the same
suit, which cannot be Hearts. We may assume it is Clubs. Then the two outside cards
on the column with Hearts inside must be Diamonds. When the inside pair change suits
again, it must go from Hearts to either Spades or Clubs. It follows that each column of 4
cards have the same colour. However, there are 26 red cards and 26 is not a multiple of
4. Consider now the subcase where the two outside cards in the first column of different
suits. Then they must be Diamonds and Clubs. Then the two outside cards on the
column with Hearts inside must be Clubs and Diamonds. It follows that all the Spades
and Hearts form 13 inside pairs, but there are 13 Spades and 13 is not a multiple of 2.

(v) Only the top two rows are suit bonds. We may assume that the top three cards in the
first column are Spades and that the bottom card is Clubs. This remains the case until
we encounter the first column of horizontal suit bonds. Then the four cards in the next
column must all be red. It follows that the four cards in each column are of the same
colour. However, there are 26 red cards and 16 is not a multiple of 4.

(vi) Only the bottom two rows are suit bonds. This is analogous to Case (v).

(vii) Only the top two rows are rank bonds. This means that there are 3 cards of the same
rank in each column. Since there are only 4 cards of each rank, all 13 columns consist
of different ranks. Hence the first row of horizontal bonds are are suit bonds, so that
all columns of horizontal bonds are suit bonds. This forces all the vertical bonds in the
bottom row to be rank bonds too, contrary to our assumption.

(viii) Only the bottom two rows are rank bonds. This is analogous to Case (vii).

7. Define the sequence {a,,} by ap = 2, a1 = 4 and a,, = 4a,_1 — 2a,;,_2 for m > 2. The
characteristic equation for this recurrence relation is 22 — 4z + 2 = 0 and the characteristic
roots are 2 & v/2. Hence a,, = ¢1(2 4+ v2)™ + ¢2(2 — v/2)™. From 2 = ay = ¢; + ¢, and
4 =a =2+ \/5) + (2 — \/5), we have ¢ — ¢y = 0 so that ¢; = ¢ = 1. Since
0<2-v2<1,0<(2-+v2)™ < 1foral m > 1. Hence a,, = |a™] for m > 1 where
a = 2+ /2. Define now the sequence {b,} by by = 2, by = 6 and b,, = 6b,,_; — b,_5 for n > 2.
Using the same procedure as before, we have b, = (3 +2v/2)" + (3 — 21/2)" and b,, = |b"] for
n > 1, where b = 3 + 2v/2. Now a,,, = 0 (mod 4) for all m > 1 while b, = 2 (mod 4) for all
n > 1. Hence |a™]| # |b"] for any positive integers m and n.



