注意：

允許學生個人，非管利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答。可直接下載而不須申請。

重版，系統地複製或大量重製這些資料的任何部分，必須獲得財團法人臺北市九章數學教育基金會的授權許可。

申請此項授權請電郵 ccmp＠seed．net．tw
Notice：
Individual students，nonprofit libraries，or schools are permitted to make fair use of the papers and its solutions．Republication，systematic copying，or multiple reproduction of any part of this material is permitted only under license from the Chiuchang Mathematics Foundation．

Requests for such permission should be made by e－mailing Mr．Wen－Hsien SUN ccmp＠seed．net．tw

International Young
 Mathematicians＇Convention（IYMC） 2012 Team Contest IImior level

1．A simple tune consists of the following 12 notes in the order：
C，E，E，E，G，G，D，F，F，A，B，B

How many different tunes can be made with the same 12 notes？
【Solution】
There are $1 \mathrm{~A}, 2 \mathrm{Bs}, 1 \mathrm{C}, 1 \mathrm{D}, 3 \mathrm{Es}, 2$ Fs and 2 Gs．So we can make $\frac{12!}{3!2!2!2!}=\frac{11!}{4}$ ＝9979200 different tunes．

Answer： 9979200
2．Any two adjacent dots in the diagram are 1 unit from each other．A path consists of horizontal and vertical segments between the dots joined end to end．How many paths from point A to point B are there with length 10 units？
【Solution】
Since each path is formed by horizontal and vertical segments between the dots，the number of paths from A to the dot on the line $A B$ is equal to the number of paths from A to the dot below it．
 Observe that if you want to go from A to a dot，you have to pass through the left dot or the dot below．
On the figure，the number on the dot shows the number of paths from A to it，hence the answer is 42 ．

Answer： 42
3．In the figure ，$A B C D$ is a quadrilateral．If $A P=B P$ ， $C R=D R$ and $\angle O E F=\angle O F E$ ，prove that $A C=B D$ ．
【Solution】
Let Q be the midpoint of $B C$ ．Then the segment $P Q$ is parallel to $A C$ and equals half of $A C$ ，the segment $Q R$ is parallel to $B D$ and equals half of $B D$ ．
Since $\angle Q P R=\angle O E F=\angle O F E=\angle Q R P$ ，hence $P Q=Q R$ ，we can get $A C=2 \cdot P Q=2 \cdot Q R=B D$ ．

4．How many different ordered triples (a, b, c) of positive integers satisfy

$$
\left(\frac{a}{c}+\frac{a}{b}+1\right) \div\left(\frac{b}{a}+\frac{b}{c}+1\right)=11 \text { and } a+2 b+c \leq 50 ?
$$

【Solution】

Simplify the given expression as follows：

$$
\begin{aligned}
\left(\frac{a b+a c+b c}{b c}\right) \div\left(\frac{b c+a b+a c}{a c}\right)=11 & \Rightarrow \frac{a b+a c+b c}{b c} \cdot \frac{a c}{b c+a b+a c}=11 \\
& \Rightarrow \frac{a}{b}=11, \quad c \neq 0 \\
& \Rightarrow a=11 b
\end{aligned}
$$

By substitution，the condition $a+2 b+c \leq 50$ becomes $13 b+c \leq 50$ ．
Since b and c are positive integers，then b can only take on the values 1,2 or 3 ．The values of a correspond directly to the values of b ，since $a=11 b$ ．
When $b=3$ ，there is 11 possible value of c ．When $b=2$ ，there are 24 possible values of c ．When $b=1$ ，there are 37 possible values of c ．Therefore，the number of different ordered triples satisfying the given conditions is $11+24+37=72$ ．

Answer： 72
5．In the figure，$A B=B C$ and $\angle B=90^{\circ}$ ．If D is a point inside $\triangle A B C$ such that $B D=C D$ and $\angle A C D=30^{\circ}$. What is the measure of $\angle A D B$ ，in degree？
【Solution 1】
We know that $\angle D C B=\angle D B C=15^{\circ}$
Draw line segments $A E$ and $B E$ with equal lengths and let $\angle E A B=\angle E B A=15^{\circ}$ ．Since $A B=B C, A E=B E, B D=D C$ and $\angle E A B=\angle E B A=\angle D C B=\angle D B C=15^{\circ}$ ，we get triangles $A B E$ and $C B D$ are congruent，hence $E B=D B$ ． Since $\angle E B D=90^{\circ}-15^{\circ}-15^{\circ}=60^{\circ}$ ，then $B E D$ is an equilateral triangle．Since $\angle A E B=150^{\circ}$ ，then $\angle A E D=$ $360^{\circ}-150^{\circ}-60^{\circ}=150^{\circ}$ ．We get $\angle E A D=\angle A D E=15^{\circ}$ ，
 hence $\angle A D B=60^{\circ}+15^{\circ}=75^{\circ}$ ．
【Solution 2】
Find point E such that $A B C E$ is a square．Let M and N be the midpoint of $B C$ and $A E$ ，respectively．Thus $M N$ is the perpendicular bisector of $B C$ and hence D is on $M N$ ． We can find a point D^{\prime} on $M N$ such that $A D^{\prime}=A B$ ． Then $E D^{\prime}=A D^{\prime}=A B=A E$ ，hence $A D^{\prime} E$ is an equilateral triangle．So $\angle B A D^{\prime}=90^{\circ}-60^{\circ}=30^{\circ}$ ，and we can get
$\angle A B D^{\prime}=\angle A D^{\prime} B=\frac{180^{\circ}-30^{\circ}}{2}=75^{\circ}$ ．
Hence $\angle D^{\prime} B C=90^{\circ}-\angle A B D^{\prime}=15^{\circ}$ ．Thus D and D^{\prime} are
 coincide and hence $\angle A D B=\angle A D^{\prime} B=75^{\circ}$

6．If $\left\{\begin{aligned} & a+b+c=7 \\ & a^{2}+b^{2}+c^{2}=21 \text { ，what is the value of } a^{4}+b^{4}+c^{4} \text { ？} \\ & a^{3}+b^{3}+c^{3}=73\end{aligned}\right.$

【Solution 1】

If cubic equation $x^{3}-A x^{2}+B x-C=0$ has roots a, b ，and c ，when we expanding $(x-a)(x-b)(x-c)=0$ ，then we have

$$
\begin{aligned}
& A=a+b+c \\
& B=a b+b c+c a \\
& C=a b c
\end{aligned}
$$

Where $B=a b+b c+c a=\frac{1}{2}\left((a+b+c)^{2}-\left(a^{2}+b^{2}+c^{2}\right)\right)=\frac{49-21}{2}=14$ ．
Since a, b ，and c are roots of $x^{3}-7 x^{2}+14 x-C=0$ ，and we have

$$
\begin{gathered}
a^{3}-7 a^{2}+14 a-C=0 \\
b^{3}-7 b^{2}+14 b-C=0 \\
c^{3}-7 c^{2}+14 c-C=0
\end{gathered}
$$

Adding，we get

$$
\left(a^{3}+b^{3}+c^{3}\right)-7\left(a^{2}+b^{2}+c^{2}\right)+14(a+b+c)-3 C=73-7 \times 21+14 \times 7-3 C=0 .
$$

Hence $C=8$ ，and we get $x^{3}-7 x^{2}+28 x-8=0$ ．
Multiplying the polynomial by x ，we have $x^{4}-7 x^{3}+14 x^{2}-8 x=0$ ．Then

$$
\begin{aligned}
a^{4}-7 a^{3}+14 a^{2}-8 a & =0 \\
b^{4}-7 b^{3}+14 b^{2}-8 b & =0 \\
c^{4}-7 c^{3}+14 c^{2}-8 c & =0
\end{aligned}
$$

Adding，we get $\left(a^{4}+b^{4}+c^{4}\right)-7\left(a^{3}+b^{3}+c^{3}\right)+14\left(a^{2}+b^{2}+c^{2}\right)-8(a+b+c)=0$ ．
Hence $a^{4}+b^{4}+c^{4}=7 \times 73-14 \times 21+8 \times 7=273$ ．
【Solution 2】

$$
49=(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=21+2(a b+b c+c a)
$$

Hence $a b+b c+c a=14$ ．

$$
343=(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b+c)(a b+b c+c a)-3 a b c=73+21 \times 14-3 a b c
$$

Hence $a b c=8$ ．
We can get

$$
\begin{aligned}
a^{4}+b^{4}+c^{4} & =\left(a^{2}+b^{2}+c^{2}\right)^{2}-2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \\
& =\left(a^{2}+b^{2}+c^{2}\right)^{2}-2\left((a b+b c+c a)^{2}-2 a b c(a+b+c)\right) \\
& =21^{2}-2\left(14^{2}-2 \times 8 \times 7\right) \\
& =273
\end{aligned}
$$

