注意：

允許學生個人，非管利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答。可直接下載而不須申請。

重版，系統地複製或大量重製這些資料的任何部分，必須獲得財團法人臺北市九章數學教育基金會的授權許可。

申請此項授權請電郵 ccmp＠seed．net．tw
Notice：
Individual students，nonprofit libraries，or schools are permitted to make fair use of the papers and its solutions．Republication，systematic copying，or multiple reproduction of any part of this material is permitted only under license from the Chiuchang Mathematics Foundation．

Requests for such permission should be made by e－mailing Mr．Wen－Hsien SUN ccmp＠seed．net．tw

Key Stage 3 －Team Contest

1．Let $f(x)=\frac{9^{x}}{9^{x}+3}$ ．Calculate $f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+\ldots+f\left(\frac{2015}{2017}\right)+f\left(\frac{2016}{2017}\right)$ ．

【Submitted by Bulgaria】

【Solution】
Notice that，

$$
\begin{aligned}
f(a)+f(1-a) & =\frac{9^{a}}{9^{a}+3}+\frac{9^{1-a}}{9^{1-a}+3} \\
& =\frac{9^{a}}{9^{a}+3}+\frac{9 \times 9^{-a}}{9 \times 9^{-a}+3} \\
& =\frac{9^{a}}{9^{a}+3}+\frac{3 \times 9^{-a}}{3 \times 9^{-a}+1} \\
& =\frac{9^{a}}{9^{a}+3}+\frac{3}{9^{a}+3}=1
\end{aligned}
$$

So，

$$
\begin{aligned}
& f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=f\left(\frac{1}{2017}\right)+f\left(1-\frac{1}{2017}\right)=1 \\
& f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)=f\left(\frac{2}{2017}\right)+f\left(1-\frac{2}{2017}\right)=1 \\
& \cdots\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)=f\left(\frac{1008}{2017}\right)+f\left(1-\frac{1008}{2017}\right)=1
\end{aligned}
$$

and $f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+\cdots+f\left(\frac{2015}{2017}\right)+f\left(\frac{2016}{2017}\right)=1008$ ．
Answer： 1008
2．In $\triangle A B C$ ，point M is between A and B such that $A M: M B=1: 2$ ．Points N and P are between C and M such that $C N: N M=3$ ： 2，$C P: P M=1: 5$ ．Segments $A N$ and $B C$ intersect at point Q ．Segments $P Q$ and $A C$ intersect at point L ．Find the ratio $C L: L A$ ．
【Submitted by Bulgaria＿SMG】

【Solution 1】

From the given，we know that $C P: P N: N M=5: 13: 12$ ．We apply Menelaus theorem to $\triangle M B C$ and line $A N, \triangle A B Q$ and line $C M$ ，and to $\triangle A N C$ and the line $P Q$ ．

We have $\frac{B Q}{C Q} \times \frac{C N}{M N} \times \frac{A M}{A B}=1$ ，so $\frac{B Q}{C Q}=2 ; \frac{A M}{B M} \times \frac{B C}{Q C} \times \frac{Q N}{A N}=1$ ，and taking into account the previous equality，we have $\frac{Q N}{A N}=\frac{2}{3}$ ．Finally，from $\frac{A Q}{N Q} \times \frac{N P}{C P} \times \frac{C L}{L A}=1$ and the previous equality，we obtain $\frac{C L}{L A}=\frac{2}{13}$ ．

【Marking Scheme】

－Apply Menelaus theorem correctly， 10 marks
－Observe that $\frac{B Q}{C Q}=2,10$ marks
－Observe that $\frac{Q N}{A N}=\frac{2}{3}, 10$ marks
－Observe that $\frac{C L}{L A}=\frac{2}{13}, 10$ marks

【Solution 2】

From the given，we know that $C P: P N: N M$ $=5: 13: 12$ ．We can solve this by applying mass point geometry or＂Law of the lever．＂ Consider the system $A B C$ and line $A Q, C M$ ． If the force component on point M is $3 a$ ，then the force component on point A is $2 a$ and the force component on point B is a ．Hence，the force component on point C is $2 a$ and the force component on point N is $5 a$ ．So，the force component on point Q is $3 a$ ．We get $\frac{A N}{N Q}=\frac{3}{2}$ and $\frac{B Q}{Q C}=\frac{2}{1}$ ．

Next，consider the system $A Q C$ and line $Q L$ ， $C N$ ．If the force component on point N is $5 a$ ， then the force component on point C is $13 a$ and the force component on point P is $18 a$ ． Hence，the force component on point A is $2 a$ and the force component on point Q is $3 a$ ．So， the force component on point L is $15 a$ ．We get $\frac{C L}{L A}=\frac{2}{13}$ ．

Answer：$\frac{152}{L A}=\frac{2}{13}$

【Marking Scheme】
－Apply Mass Point Geometry or＂Law of the lever＂correctly， 10 marks
－Find the force components on each point of the system ABC and line AQ，CM， 10 marks
－Find the force components on each point of the system AQC and line QL，CN， 10 marks
－Observe that $\frac{C L}{L A}=\frac{2}{13}, 10$ marks
3．Find the largest integer p such that $14^{2017}+2^{2017}$ is divisible by 2^{p} ．【Submitted by Bulgaria＿FPMG】
【Solution】
$14^{2017}+2^{2017}=2^{2017}\left(7^{2017}+1\right)$ and $7^{2017} \equiv 7 \times\left(7^{2}\right)^{1008} \equiv 7(\bmod 8)$ ，therefore，
$14^{2017}+2^{2017} \equiv 0\left(\bmod 2^{2020}\right)$ ，but $7^{2017}+1 \equiv 7 \times\left(7^{2}\right)^{1008} \equiv 7+1 \equiv 8\left(\bmod 2^{4}\right)$ ．

4．In pentagon $A B C D E$ ，points M, P, N and Q are midpoints of $A B, B C, C D$ and $D E$ respectively．While points K and L are midpoints of $Q P$ and $M N$ ，respectively，as shown in the figure below．If $K L=25 \mathrm{~cm}$ ，find the length of $E A$ ，in cm ．
【Submitted by Bulgaria】

【Solution】

Connect $B E$ and $C E$ ．Let T be the midpoint of $B E$ ．Connect $Q N, N P, P T$ and $T Q$ ．
In triangle $A B E, T M=\frac{1}{2} A E$ and $T M / / A E$ ．
In triangle $E C D, Q N=\frac{1}{2} C E$ and $Q N / / C E$ ．
In triangle $B E C, T P=\frac{1}{2} C E$ and $T P / / C E$ ．
So，TPNQ is parallelogram．
Connect NT and TM．

In triangle $N T M, K L=\frac{1}{2} T M$ and $K L / / T M$ since K is the midpoint of $Q P$ and L is the midpoint of diagonal $N T$ ．Hence， $K L=\frac{1}{4} A E$ ，i．e．$E A=4 K L=100 \mathrm{~cm}$ ．

【Marking Scheme】
－Plot point $T, 10$ marks
－Show that TPNQ is parallelogram， 10 marks
－Observe that $K L=\frac{1}{2} T M, 10$ marks
－Observe that $K L=\frac{1}{4} A E, 5$ marks
－Get the correct answer， 5 marks．

5．Let x and y be positive integers，where $0<x<y<2018$ ．How many ordered pairs (x, y) are there such that $x^{2}+2018^{2}=y^{2}+2017^{2}$ ？【Submitted by

Bulgaria＿SMG】

【Solution】
The given equation is transformed to $y^{2}-x^{2}=2018^{2}-2017^{2}$ ，
so that $(y+x)(y-x)=4035=3 \times 5 \times 269$ ．
Because $y+x$ and $y-x$ are positive integers，it follows

$$
\left\{\begin{array} { l }
{ y + x = 5 \times 2 6 9 } \\
{ y - x = 3 }
\end{array} \text { or } \left\{\begin{array} { l }
{ y + x = 3 \times 2 6 9 } \\
{ y - x = 5 }
\end{array} \text { or } \left\{\begin{array} { l }
{ y + x = 2 6 9 } \\
{ y - x = 1 5 }
\end{array} \text { or } \left\{\begin{array}{l}
y+x=3 \times 5 \times 269 \\
y-x=1
\end{array}\right.\right.\right.\right.
$$

Solve them and get

$$
\left\{\begin{array} { l }
{ x = 6 7 1 } \\
{ y = 6 7 4 }
\end{array} \text { or } \left\{\begin{array} { l }
{ x = 4 0 1 } \\
{ y = 4 0 6 }
\end{array} \text { or } \left\{\begin{array} { l }
{ x = 1 2 7 } \\
{ y = 1 4 2 }
\end{array} \text { or } \left\{\begin{array}{l}
x=2017 \\
y=2018
\end{array}\right.\right.\right.\right.
$$

But the last pair $(2017,2018)$ does not satisfy the conditions，thus，there are only 3 pairs of positive integers (x, y) ．

Answer： 3 pairs
6．Points A, B, C, D and E are on the circumference． Chord $A C$ is a diameter of the circle，as shown in the figure below．If $\angle A B E=\angle E B D=\angle D B C$ ， $B E=16 \mathrm{~cm}$ and $B D=12 \sqrt{3} \mathrm{~cm}$ ，find the area of pentagon $A B C D E$ ．【Submitted by Indonesia】

【Solution】

Since $\angle A B E=\angle E B D=\angle D B C$ and $\overparen{A C}$ is divided into three equal lengths，so，$A E=E D=D C . A B C D$ is a
 cyclic quadrilateral，so $\angle A+\angle D=180^{\circ}$
and $\angle E+\angle B=180^{\circ}$ ．

Look at triangle $\triangle B E D$, since $A E=E D$, so if we rotate $\triangle B E D$ clockwise, with center of rotation a point E, then point D placing point A and form a new triangle $\triangle B E D^{\prime}$ as shown in the figure below.

And since $B E=B^{\prime} E$, and $\angle E B D^{\prime}=\angle E B^{\prime} D^{\prime}$ so $\triangle B E B^{\prime}$ is an isosceles triangle. $\angle A B E=\angle E B D=\angle D B C=30^{\circ}$,
and altitude of $\triangle B E B^{\prime}$ is equal to $\frac{1}{2} B E=8 \mathrm{~cm}, B B^{\prime}=16 \sqrt{3} \mathrm{~cm}$
The area of $\triangle B E B^{\prime}=\frac{16 \sqrt{3} \times 8}{2}=64 \sqrt{3} \mathrm{~cm}^{2}$
If we do the same action for $\triangle B E D$ counter clockwise with central of rotation at point D, so point E placing point C and form a new triangle $\triangle B D B^{\prime \prime}$ as shown in the figure below.

And since $B D=B^{\prime \prime} D$, and $\angle D B^{\prime \prime} E^{\prime}=\angle D B E^{\prime}=30^{\circ}, \triangle B D B^{\prime \prime}$ is an isosceles triangle. The altitude of $\triangle B D B^{\prime \prime}$ is equal to $\frac{1}{2} B D=6 \sqrt{3} \mathrm{~cm}$, so $B B^{\prime \prime}=36 \mathrm{~cm}$. The area of $\triangle B D B^{\prime \prime}=\frac{36 \times 6 \sqrt{3}}{2}=108 \sqrt{3} \mathrm{~cm}^{2}$.
The area of $\triangle B E D=\frac{B D \times B E \times \sin 30^{\circ}}{2}=\frac{16 \times 12 \sqrt{3} \times \frac{1}{2}}{2}=48 \sqrt{3} \mathrm{~cm}^{2}$.
Hence, the area of pentagon $A B C D E=$ Area $\triangle B E B^{\prime}+$ Area $\triangle B D B^{\prime \prime}-$ area $\triangle B E D$

$$
\begin{aligned}
&=64 \sqrt{3}+108 \sqrt{3}-48 \sqrt{3}=124 \sqrt{3} \mathrm{~cm}^{2} \\
& \text { Answer: } 64 \sqrt{3}+108 \sqrt{3}-48 \sqrt{3}=124 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

【Marking Scheme】

- Found the area of $\triangle B E B^{\prime}, 10$ marks
- Found the area of $\triangle B D B^{\prime \prime}, 10$ marks
- Found the area of $\triangle B E D, 10$ marks
- Correct answer, 10 marks

7．A 10×10 chessboard is dissected into thirty－three 1×3 or 3×1 rectangles and one unit square．In how many different positions can this unit square be，if the chessboard may not be reflected or rotated？【Submitted by Central Jury】

【Solution】

We first label the 100 squares A ， B or C diagonal by diagonal in two ways，as shown in the diagram below．In each labelling，there are $34 \mathrm{As}, 33 \mathrm{Bs}$ and 33 Cs．Since each rectangle covers one square with label A ，one with B and one C ，the 1×1 square must occupy a square with label A in both labellings．There are 16 possible positions for it．Each position is attainable．Just add three 1×3 rectangles in the same row，and fill the remaining three groups of three rows with 3×1 rectangles．

A	B	C	A	B	C	A	B	C	A
B	C	A	B	C	A	B	C	A	B
C	A	B	C	A	B	C	A	B	C
A	B	C	A	B	C	A	B	C	A
B	C	A	B	C	A	B	C	A	B
C	A	B	C	A	B	C	A	B	C
A	B	C	A	B	C	A	B	C	A
B	C	A	B	C	A	B	C	A	B
C	A	B	C	A	B	C	A	B	C
A	B	C	A	B	C	A	B	C	A

A	B	C	A	B	C	A	B	C	A
C	A	B	C	A	B	C	A	B	C
B	C	A	B	C	A	B	C	A	B
A	B	C	A	B	C	A	B	C	A
C	A	B	C	A	B	C	A	B	C
B	C	A	B	C	A	B	C	A	B
A	B	C	A	B	C	A	B	C	A
C	A	B	C	A	B	C	A	B	C
B	C	A	B	C	A	B	C	A	B
A	B	C	A	B	C	A	B	C	A

Answer： 16
8．Prove the inequality：$\sqrt{99 \times 101}+\sqrt{98 \times 102}+\ldots+\sqrt{1 \times 199}<\frac{100^{2} \pi}{4}$ ．【Submitted

by Bulgaria＿SMG】

【Solution】

Consider a quarter circle with radius 1 ．
Now，inscribe a row－like figure consisting of 99 rectangles，each of them having a base length $\frac{1}{100}$ ．
The area of the first rectangle is：
$S_{1}=O B \times A B=O B \sqrt{1-O B^{2}}=\frac{\sqrt{99 \times 101}}{100^{2}}$ ，
the area of the second rectangle is：

$S_{2}=\frac{1}{100} \sqrt{1-\left(\frac{2}{100}\right)^{2}}=\frac{\sqrt{98 \times 102}}{100^{2}}$
and so on．The area of the last one is $S_{99}=\frac{1}{100} \sqrt{1-\left(\frac{99}{100}\right)^{2}}=\frac{\sqrt{1 \times 199}}{100^{2}}$ ．
So，the total area of the figure is less than $\frac{1}{4}$ of the circle area，i．e．

$$
\frac{\sqrt{99 \times 101}}{100^{2}}+\frac{\sqrt{98 \times 102}}{100^{2}}+\cdots+\frac{\sqrt{1 \times 199}}{100^{2}}<\frac{\pi}{4} .
$$

【Marking Scheme】
－Construct a quarter of a circle and inscribe the rectangles， 15 marks．
－Find the rules of the areas of the rectangles， 15 marks．
－Conclude the inequality， 10 marks．
9．A computer randomly chooses three different points on the given grid（all points have the same chance of being chosen）．
Let $\frac{p}{q}$ be the probability to form a triangle with these points（this fraction is written in its irreducible form）．Find the sum of p and q ．【Submitted by Central Jury】

【Solution】

There are $C_{3}^{21}=1330$ ways of choosing 3 points out of 21 ．They will form a triangle if not all three are on the same line．We can see that there are $C_{3}^{5} \times 6=60$ ways to choose three points on one of the 6 lines（black）having exactly 5 points of the grid， $C_{3}^{4} \times 4=16$ ways to choose three points on one of the 4 lines（blue）having exactly 4 points and $C_{3}^{3} \times 14=14$ ways of choosing three points on one of the 14 lines（red） having exactly 3 points．

Thus，the number of ways in which a triangle can be formed is
$1330-60-16-14=1240$ ．The probability is then $\frac{p}{q}=\frac{124}{133}$ ，and so $q+p=257$ ．
Answer： 257
10．Jane has 12 marbles，where in one is fake．She are not certain if the fake marble is heavier or lighter than the real marble．What is the minimum number of weightings needed to find the fake marble and determine whether the fake marble is heavier or lighter than the real marble？Explain your answer．

【Solution】

Jane would need to divide the 12 marbles into three groups（ $A_{1}, A_{2}, A_{3}, A_{4}$ ）， $\left(B_{1}, B_{2}, B_{3}, B_{4}\right)$ ，and（ $C_{1}, C_{2}, C_{3}, C_{4}$ ）．

She begins by balancing $A_{1}, A_{2}, A_{3}, A_{4}$ and $B_{1}, B_{2}, B_{3}, B_{4}$. If both balance, then she would know that one of $C_{1}, C_{2}, C_{3}, C_{4}$ is fake.
Now, she chooses 3 marbles from $C_{1}, C_{2}, C_{3}, C_{4}$ (assume that she has chosen C_{1}, C_{2}, C_{3}) and balance it against any 3 from of the known genuine marbles (assume that she chose A_{1}, A_{2}, A_{3}). If they balance, so the fake one is C_{4}. Otherwise, if they don't balance and that C_{1}, C_{2}, C_{3} is heavier to A_{1}, A_{2}, A_{3}, she can conclude that the fake one is heavier and she chooses 2 from C_{1}, C_{2}, C_{3} and do the weighing (assume she chose C_{1} and C_{2}, if they balance, the fake marble is C_{3}, otherwise, the fake one is the heavier marble. (it's the same way scenario if one out of the set is lighter).

Now, suppose that she balances $A_{1}, A_{2}, A_{3}, A_{4}$ and $B_{1}, B_{2}, B_{3}, B_{4}$ and it didnt't balance, so $C_{1}, C_{2}, C_{3}, C_{4}$ are all genuine. Suppose that $A_{1}, A_{2}, A_{3}, A_{4}$ was heavier than $B_{1}, B_{2}, B_{3}, B_{4}$. For her second balance, she replaces 3 marbles from $A_{1}, A_{2}, A_{3}, A_{4}$ (suppose she has chosen A_{1}, A_{2}, A_{3}) with 3 marbles from $C_{1}, C_{2}, C_{3}, C_{4}$ (suppose she has chosen C_{1}, C_{2}, C_{3}), and in addition, swap A_{4} to one from $B_{1}, B_{2}, B_{3}, B_{4}$ (suppose she choose B_{4}). So, for the second balance we do weighing $C_{1}, C_{2}, C_{3}, B_{4}$ and $B_{1}, B_{2}, B_{3}, A_{4}$. If it balances, she knows that one of the one from 3 balls A_{1}, A_{2}, A_{3} is fake and heavier, then he only need to know a third weighing to know the fake one.
If $C_{1}, C_{2}, C_{3}, B_{4}$ is lighter, one of the 2 balls swapped (A_{4} or B_{4}) is fake, so on the third weighing, weigh one marble from $C_{1}, C_{2}, C_{3}, C_{4}$ with A_{4}, if it balance, we know that B_{4} is fake and lighter, if not, then A_{4} is fake and heavier. If $B_{1}, B_{2}, B_{3}, A_{4}$ is still lighter, she would know that one of B_{1}, B_{2}, B_{3} is lighter, then she only needs the third weighing to know the fake marble.
In any case, minimum three balances are required.
Answer: 3 weighings

【Marking Scheme】

- Reason why we cannot do with 2 weightings, 10 marks
- Give a solution with 3 weightings, up to 30 marks (partial credit to be given depending on progress)
- Show a solution with 4 weightings, which of course is not the right solution, 10 marks
- Solutions for 5 weightings or more, 0 marks.

