注意：

允許學生個人，非管利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答。可直接下載而不須申請。

重版，系統地複製或大量重製這些資料的任何部分，必須獲得財團法人臺北市九章數學教育基金會的授權許可。

申請此項授權請電郵 ccmp＠seed．net．tw
Notice：
Individual students，nonprofit libraries，or schools are permitted to make fair use of the papers and its solutions．Republication，systematic copying，or multiple reproduction of any part of this material is permitted only under license from the Chiuchang Mathematics Foundation．

Requests for such permission should be made by e－mailing Mr．Wen－Hsien SUN ccmp＠seed．net．tw

Mathematics Essay Problems

Name : \qquad
Team : \qquad

Index Number : \qquad

Singapore

Instructions:

1. Write your name, team and index number on every page of this booklet.
2. Write your detailed solution in English in the space provided for each question in this booklet.
3. If you need more space for your working, you may use the blank page on the reverse side of each page.
4. Each question is worth 3 marks, and partial credit may be awarded.
5. There are 13 questions in this paper.
6. You have $\underline{90}$ minutes to complete this paper.
7. Use black or blue pen, or pencil to write your answer.

The following table is for jury use only.

No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10	11	12	13	Total
Score														
Signature														
Score														
Signature														

ESSAY PROBLEMS

Name: \qquad Team: \qquad Index Number: \qquad

1. Positive integers are arranged in the following pattern.

1	2	3	4	\ldots	100
2	3	4	5	\ldots	101
3	4	5	6	\ldots	102
4	5	6	7	\ldots	103
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
100	101	102	103	\ldots	199

Find the sum of all the integers in the table above.

ESSAY PROBLEMS

Name:
Team:
Index Number:
2. In 2017, Alex's age is equal to the sum of all the digits of his year of birth and his mother's age is also equal to the sum of all the digits of her year of birth. How old was Alex's mother when she gave birth to Alex?

ESSAY PROBLEMS

Name:
Team:
Index Number:
3. A 4035-digit number is a multiple of 13 . Its first 2017 digits are all 5 s, and its last 2017 digits are all 6 s . What is the middle digit?
$\underbrace{555 \cdots 55}_{2017 \text { digits }} ? \underbrace{666 \cdots 66}_{2017 \text { digits }}$

ESSAY PROBLEMS

Name:
Team:
Index Number: \qquad
4. All positive integers from 1 to 10,000 are arranged according to the following rules:

- The first row contains all the integers whose sum of their digits is 1 .
- The second row contains all the integers whose sum of their digits is 2 .
- The third row contains all the integers whose sum of their digits is 3 .
-
- Integers in each row are arranged in increasing order.
- Each of these rows are then rearranged in a line such that the first number in the second row comes after the last number of the first row; the first number in the third row comes after the last number of the second row;... and so on.
Which term is the number 9799 in the final arrangement?

ESSAY PROBLEMS

Name: \qquad Team: Index Number: \qquad
5. A trapezium has three equal sides, and the base is 2 cm less than the sum of these three sides. If the distance between the parallel sides is 5 cm , find the area, in cm^{2}, of the trapezium.

ESSAY PROBLEMS

Name:
Team:
Index Number:
6. A box contained some red and blue balls. At least 90% of the balls were red. Peter first took the balls out of the box one at a time. Out of the first 50 balls that he took out, only one was blue. Subsequently, he took out 8 balls each time where one was blue and 7 were red. He continued in this manner until fewer than 8 balls were left in the box. Find the maximum number of balls the box could have contained at the beginning.

ESSAY PROBLEMS

\qquad
7. Square $A B C D$ has sides of length 12 cm . The centre of the square is O, and P, Q, R and S are the midpoints of $O A, O B, O C$ and $O D$ respectively. Find the area, in cm^{2}, of the shaded region.

ESSAY PROBLEMS

Name: Team: Index Number:
8. Cindy used red and green pens to write all 3-digit positive integers in increasing order. All the even numbers were written in red and all the odd numbers were written in green. How many among all the digits ' 6 ' were written in red?

ESSAY PROBLEMS

Name:
Team:
Index Number:
9. Each face of a cube is divided into four equal small squares. Each small square is painted with one of the three different available colours. Small squares with common sides or edges are painted with different colours. What is the maximum number of small squares that can be painted with the same colour?

ESSAY PROBLEMS

Name:
Team:
Index Number: \qquad
10. Triangle $A B C$ is an isosceles triangle with $A C=B C$. Point H is on $A B$ such that $C H$ is perpendicular to $A B$ and the angle bisector of $\angle C A B$ meets $B C$ at point P. If $A P=2 C H$, find the measure, in degrees, of $\angle A C B$.

ESSAY PROBLEMS

Name: \qquad Team: Index Number: \qquad
11. In the figure below, $A B C D$ is a trapezium where $A D$ is parallel to $B C$. Points P, A and D lie on a straight line. Points B, C and Q also lie on a straight line. Line $P Q$ intersects $A B, B D, A C$ and $C D$ at K, L, M and N respectively, such that $P K=K L=L M=M N=N Q$. If $A D=20 \mathrm{~cm}$, what is the length, in cm, of $B C$?

ESSAY PROBLEMS

Name: \qquad Team: Index Number: \qquad
12. The figure on the left shows a 3×2 table with 12 grid points. Three grid points are chosen to form a right triangle. The figure on the right shows two such right triangles. How many right triangles can be formed?

ESSAY PROBLEMS

Name:
Team:
Index Number:
13. A square is drawn on a plane. Mary chooses a point P on this plane but keeps its position secret. You may draw any straight line on the plane and Mary will tell you whether P lies on one side or on the other side of the line, or on the line itself. The answer is given to you immediately after each line has been drawn. Regardless of the position of the point Mary chooses, what is the minimum number of lines you have to draw to find out whether P lies inside or outside the square or on the sides of the square? Explain your answer.

