注意:

允許學生個人、非營利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答。可直接下載而不須申請。

重版、系統地複製或大量重製這些資料的任何部分,必 須獲得財團法人臺北市九章數學教育基金會的授權許 可。

申請此項授權請電郵 ccmp@seed.net.tw

Notice:

Individual students, nonprofit libraries, or schools are permitted to make fair use of the papers and its solutions. Republication, systematic copying, or multiple reproduction of any part of this material is permitted only under license from the Chiuchang Mathematics Foundation.

Requests for such permission should be made by e-mailing Mr. Wen-Hsien SUN ccmp@seed.net.tw

MATHEMATICS ESSAY PROBLEMS

Name : Index Number :	
-----------------------	--

Country:

15th International Mathematics and Science Olympiad

Zhejiang Province, China

29 September 2018

Instructions:

- 1. Write your name, team and index number on every page of this booklet.
- 2. Write your detailed solution in English in the space provided for each question in this booklet. If you need more space for your working solutions, you may use the reverse side of each page, but please write "next side continued" in the last line.
- 3. There are 13 questions in this paper.
- 4. Each question is worth 3 marks and partial credits may be awarded.
- 5. Diagrams are NOT drawn to scale. They are intended only as aids.
- 6. You have <u>90</u> minutes to complete this paper.
- 7. Use black pen or blue pen or pencil to write your answer.

The following table is for jury use only.

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	Total
Score														
Signature														
Score														
Signature														

Do not turn over this page until you are told to do so.

Name:	Team:	Index Number:
2. A 9×9×9 cube is How many differer (Note: Two cubes h	nt cubes of different sizes	Index Number:
	Answer:	cubes

Nam	e:	_ Team:	Index Number:			
3.	3. Find all possible positive integer ordered triples (m, n, p) such that $m^2 + n^2 = p^2$, where p is a prime number, $p^2 < 200$ and $m < n$.					
_						
Ans	wer:					

Name:	Team:	Index Number:
Any two on tho cells the Given of cell	Is about to shade some cells in the 6×6 wo cells that share a same side must at mose un-shaded cells, Peter writes a number that shares a side with this cell that are shat that all the numbers written is at most 3, as that Peter can shade? The grid with one possible solution of shades.	grid which is shown below. nost have one shaded cell. While er which is the total number of haded. , what is the maximum number
Answer:	cells,	

Nam	e:	Team:	Index Number:
5.	Find all possible three-digit num (Note: $n!$ (read as n factorial) in For example: $6! = 6 \times 5 \times 4 \times 3 \times 6 \times 6$	neans $n! = n \times (n-1)$	
	Answe	r:	

Nam	ne:	Team:	Index Number:
6.	In parallelogram $ABCD$, point CD and point H is on AB such Let $AH : HB = 3 : 2$ and point 296 cm ² , find the area, in cm ² ,	that $EF \perp DC$ and G is on line CH . If	d $CH \perp AB$. the area of triangle EFG is
		D	A H B G F C

Answer:

 cm^2

Name:	Team:	Index Number:
$(45)_8$ in not exist two-dig	y express a number in base-8. For example to be a pase-8 because $(45)_8 = 4 \times 8 + 5 = 3$ it because $4 \times 8 + 9 = 41$ should be example to the prime number in base-10, where A , rime number in base-10, how many prime number in base-10, how many prime number in base-10.	7. On the other hand, $(49)_8$ does appressed as $(51)_8$. Let \overline{AB} be a $B < 8$. If the value of $(\overline{AB})_8$ is
	Answer:	values

8. Colour each side of the cube below by one of the 3 colours: blue, red or yellow so any 2 sides that share the same vertex should have different colours. How many different ways can we color the cube? (Note: Coloring is considered the same if when rotating or reflecting, we see it the same way.)	Name:	Team:	Index Number:
	so any 2 sides the many different v	nat share the same vertex should ways can we color the cube? (N	d have different colours. How ote: Coloring is considered the
Answer: ways,	Answer:		

Nam	e:		Team:		Index Number:	
9.	different let	at the state of t	ifferent digits	If $2 \overline{ab}$, $3 \overline{ab}$		
Ans	wer:					
Ī						

Nam	ne: Team:	Index Number:
10.	A regular octahedron is shown in the di	agram below.
	There are 6 vertices altogether connected from vertex <i>A</i> and moves along any edge than once.	ge but cannot go through any edge more
	If the ant visits each vertex exactly once many different routes are there?	e before it returns to vertex A, how
	Answer:	routes

Nam	ne: Team:	Index Number:	
11.	11. Let A be a positive integer consisting of different digits, and B be a positive integer whose digits are a rearrangement of the digits of A. Suppose that $A - B = \underbrace{11\cdots 1}_{m}$ (m copies of 1's). Find the maximum value of m that satisfy		
	the given requirements.		
	Answer:		

N	fame:	Team:	Index Number:
12	12. Let n be a positive integer such that all of its digits are distinct and that its digit sum is 17. If $n < 2018$, how many different possible values of n are there?		
		Answer:	
1			

Nam	e:	Team:	Index Number:
13.	Using 16 black pay pawns into the 4×		w many ways can we place 16 pawn is occupying 1 cell, such r of white pawns is even?
		Answer:	ways