注意：

允許學生個人，非管利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答。可直接下載而不須申請。

重版，系統地複製或大量重製這些資料的任何部分，必須獲得財團法人臺北市九章數學教育基金會的授權許可。

申請此項授權請電郵 ccmp＠seed．net．tw
Notice：
Individual students，nonprofit libraries，or schools are permitted to make fair use of the papers and its solutions．Republication，systematic copying，or multiple reproduction of any part of this material is permitted only under license from the Chiuchang Mathematics Foundation．

Requests for such permission should be made by e－mailing Mr．Wen－Hsien SUN ccmp＠seed．net．tw

International Young Mathematicians＇Convention Senior level
 Team Contest

1．Let a and b be real numbers such that the equation $x^{4}+a x^{3}+2 x^{2}+b x+1=0$ has at least one real root，what is the minimum possible value of $a^{2}+b^{2}$ ？【Submitted by Jury】
【Solution】
Let r be a real root of the equation．We then write the equation as $a r^{2}+b=\frac{\left(r^{2}+1\right)^{2}}{r}$ ． By Cauchy＇s Inequality，$\left(r^{4}+1\right)\left(a^{2}+b^{2}\right) \geq\left(a r^{2}+b\right)^{2}$ ．By the Arithmetic－Geometric Means Inequality，we have

$$
\begin{aligned}
a^{2}+b^{2} & \geq \frac{\left(r^{2}+1\right)^{4}}{r^{2}\left(r^{4}+1\right)} \\
& =\frac{r^{8}+2 r^{4}+1+4 r^{4}+4 r^{6}+4 r^{2}}{r^{2}\left(r^{4}+1\right)} \\
& =\frac{r^{4}+1}{r^{2}}+\frac{4 r^{2}}{\left(r^{4}+1\right)}+4 \\
& \geq 4+4=8
\end{aligned}
$$

Answer： 8
2．On an infinite chessboard，the squares at the intersections of every fourth row and every fourth column are removed．Prove that it is not possible for a Knight to visit every square exactly once which has not been removed．【Submitted by Jury】

【Solution】

Consider a 61×61 subboard with the four corners squares removed，among others．These squares are shaded in the diagram below which shows the upper left corner of this subboard，bounded by the double lines．If we paint the infinite chessboard in the usual pattern，all shaded squares have the same colour，say black．
Now the subboard has $61^{2}=3721$ squares， $\frac{3721-1}{2}=1860$ of which are white．Of the 1861 black

squares， $16^{2}=256$ have been removed，leaving behind $1861-256=1605$ ．There are also $4 \times(61+1)=248$ black squares outside the subboard that are within a Knight＇s move from some white squares inside the subboard．These are marked with black dots in the diagram．Since $1605+248=1853<1860$ ，it is impossible for a Knight to tour every white square in the subboard because a Knight must visit squares of opposite colours in two consecutive moves．

【Marking Scheme】

－Consider a 61×61 subboard with the four corners squares removed，among others， 10 marks．
－Observe there are 1860 white squares， 5 marks．
－Observe there are 1605 black squares without being removed， 10 marks．
－Observe there are 248 black squares outside the subboard that are within a Knight＇s move from some white squares inside the subboard， 10 marks．
－Observe the result holds since $1605+248=1853<1860,5$ marks．
3．Suppose $x=\frac{a}{a^{2}+16}$ ，when a is a real number．What is the minimum value of $\sqrt{1+8 x}+\sqrt{1-8 x}$ ？【Submitted by Philippines】
【Solution】

$$
\begin{aligned}
\sqrt{1+8 x}+\sqrt{1-8 x} & =\sqrt{1+\frac{8 a}{a^{2}+16}}+\sqrt{1-\frac{8 a}{a^{2}+16}} \\
& =\sqrt{\frac{a^{2}+8 a+16}{a^{2}+16}}+\sqrt{\frac{a^{2}-8 a+16}{a^{2}+16}} \\
& =\sqrt{\frac{(a+4)^{2}}{a^{2}+16}}+\sqrt{\frac{(a-4)^{2}}{a^{2}+16}} \\
& =\frac{|a+4|+|a-4|}{\sqrt{a^{2}+16}}
\end{aligned}
$$

Case 1：When $a<-4$ ：
Above expression is equal to $\frac{-a-4-a+4}{\sqrt{a^{2}+16}}=-\frac{2 a \sqrt{a^{2}+16}}{a^{2}+16}>\frac{8 \sqrt{32}}{32}=\sqrt{2}$ ；
Case 2：When $-4 \leq a<4$ ：
Above expression is equal to $\frac{a+4-a+4}{\sqrt{a^{2}+16}}=\frac{8 \sqrt{a^{2}+16}}{a^{2}+16} \geq \frac{8 \sqrt{16}}{16}=2$ ．In this case，the minimum value happens when $a=0$ ．
Case 3：When $a \geq 4$ ：
Above expression is equal to $\frac{a+4+a-4}{\sqrt{a^{2}+16}}=\frac{2 a \sqrt{a^{2}+16}}{a^{2}+16} \geq \frac{8 \sqrt{32}}{32}=\sqrt{2}$ ．
Thus，the minimum value of $\sqrt{1+8 x}+\sqrt{1-8 x}$ is $\sqrt{2}$ ．

4．In the figure，points D and E lies along sides $A B$ and $A C$ of triangle $A B C$ such that $D E$ is parallel to $B C$ ．It is known that $A D=D E=A C=r$ and $B D=A E=s$ ． Now，a regular decagon is inscribed in a circle whose radius is r ．Prove that the length to a side of this decagon is equal to s ．【Submitted by Jury】

【Solution 1】

Since $A D=D E=A C$ ，the circle with radius $A C$ may be centered at D and passing through A and E ．Since $B D=A E$ ，the problem is equivalent to proving that $\angle A D E=36^{\circ}$ ．
Since $A D=D E$ and $D E$ is parallel to $B C, \angle D A E=\angle D E A=\angle B C A$ ，so that $A B=B C$ ．Complete the parallelograms $B D E P$ and $A E P Q$ ．Then $A E=B D=P E$ ，so that $A E P Q$ is actually a rhombus．Let $\angle P A Q=\theta$ ．Then $\angle P A E=\theta$ and it follows that $\angle B Q P=\angle A C P=2 \theta$ ．Since $B Q=B P=D E=A C$ and $P Q=A Q=P C$ ， triangles $B Q P$ and $A C P$ are congruent，so that $\angle A D E=\angle Q B P=\angle C A P=\theta$ ．It follows that $5 \theta=180^{\circ}$ and indeed $\theta=36^{\circ}$ ．

【Marking Scheme】

－Observe the problem is equivalent to proving that $\angle A D E=36^{\circ}, 5$ marks．
－Show that $A B=B C, 10$ marks．
－Construct the parallelograms $B D E P$ and $A E P Q$ ，and then show that $A E P Q$ is a rhombus， 10 marks．
－Show that triangles $B Q P$ and $A C P$ are congruent， 10 marks．
－Conclude that $\angle A D E=36^{\circ}, 5$ marks．

【Solution 2】
Since triangles $A D E$ and $A B C$ are similar，then $\frac{A D}{A B}=\frac{A E}{A C}=\frac{D E}{B C}=\frac{r}{r+s}=\frac{s}{r}$ ． We have $r^{2}=r s+s^{2}$ ，that is $s^{2}+r s-r^{2}=0$ ．Solve the equation，$s=\frac{-1 \pm \sqrt{5}}{2} r$ ． s can not be negative．Hence $s=\frac{-1+\sqrt{5}}{2} r=\varphi r$ ．
On other hand，a regular decagon is inscribed in a circle whose radius is r ，the length to a side of this decagon is equal to $r \varphi$ ．Hence it length is s ．

【Marking Scheme】

－Show that triangles $A D E$ and $A B C$ are similar and $\frac{A D}{A B}=\frac{A E}{A C}=\frac{D E}{B C}, 10$ marks．
－Show that $s=\frac{-1+\sqrt{5}}{2} r=\varphi r \quad 10$ marks．
－Show that the length to a side of this decagon is equal to $r \varphi, 20$ marks．
5．For any positive integer n and non－zero digits a, b and c ，let A_{n} be an n－digit integer each of whose digits is equal to a ；let B_{n} be an n－digit integer each of whose digits is equal to b and let C_{n} be an $2 n$－digit（not n－digit）integer each of whose digits is equal to c ．What is the maximum value of $a+b+c$ for which there are at least two values of n such that $C_{n}-B_{n}=A_{n}^{2}$ ？【Submitted by

Thailand】

【Solution】

Observe $A_{n}=a\left(1+10+10^{2}+\cdots+10^{n-1}\right)=a \times \frac{10^{n}-1}{9}$ ；similarly $B_{n}=b \times \frac{10^{n}-1}{9}$ and $C_{n}=c \times \frac{10^{2 n}-1}{9}$ ．The relation $C_{n}-B_{n}=A_{n}^{2}$ can be rewritten as

$$
c \times \frac{10^{2 n}-1}{9}-b \times \frac{10^{n}-1}{9}=a^{2} \times\left(\frac{10^{n}-1}{9}\right)^{2} .
$$

Since $n>0,10^{n}>1$ and we may cancel out a factor of $\frac{10^{n}-1}{9}$ to obtain

$$
c \times\left(10^{n}+1\right)-b=a^{2} \times\left(\frac{10^{n}-1}{9}\right) .
$$

This is a linear equation in 10^{n} ．Thus，if two distinct values of n satisfy it，then all values of n will．Matching coefficients，we get

$$
c=\frac{a^{2}}{9} \text { and } c-b=-\frac{a^{2}}{9} \text {, so } b=\frac{2 a^{2}}{9} \text {. }
$$

To maximize $a+b+c=a+\frac{a^{2}}{3}$ ，we need to maximize a ．Since b and c must be
integers，a must be a multiple of 3 ．If $a=9$ ，then b exceeds 9 ．However，if $a=6$ ， then $b=8$ and $c=4$ for an answer of 18 ．

6．How many positive integers $n \leq 2018$ are there so that it is possible to arrange the numbers from 1 to n in some order，such that the average of any group of two or more adjacent numbers is not an integer？【Submitted by Jury】

【Solution】

The sum of n consecutive numbers is $\frac{n(2 a+n-1)}{2}$ where a is the first of these numbers．Their average is $\frac{2 a+n-1}{2}$ ，which is an integer if and only if n is odd．In our problem，n cannot be odd．We now show that n can be any even number．Arrange the n numbers in their natural order and group them into pairs．Reverse the order within each pair to yield the arrangement $2,1,4,3,6,5, \ldots, n, n-1$ ．Consider any k where $2 \leq k \leq n$ ．Consider first the case where k is odd．Any k adjacent numbers in our arrangement consist of k consecutive integers except that the one which is not in a pair is replaced by its partner，which differs from it by 1 ．Thus the sum of these k numbers is $m k \pm 1$ for some m ，so that their average is not an integer．Finally， consider the case where k is even．Any k adjacent numbers in our arrangement consist of k consecutive integers，possibly with the two at the ends not being in pairs and replaced by their partners．Since one would be increased by 1 while the other would be decreased by 1 ，the sum is not affected by the replacement．So the average is not an integer．Thus there are $\frac{2018}{2}=1009$ positive integers．

Answer： 1009

【Marking Scheme】

－Observe n can not be odd， 10 marks．
－Suppose n is even and then yield the arrangement $2,1,4,3,6,5, \ldots, n, n-1,5$ marks．
－Consider any k where $2 \leq k \leq n$ ．
Show that their average is not an integer as k is odd， 10 marks． Show that their average is not an integer as k is even， 10 marks．
－Conclude that n is even and the answer is 1009,5 marks．

