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1. Let a, b, c { }0,1,2, ,9∈ ⋯ . The quadratic equation2 0ax bx c+ + =  has a rational 

root. Prove that the three-digit number abc  is not a prime number. 
 

2. For any set { }1 2, , , mA a a a= ⋯  , let 1 2( ) mP A a a a= ⋯ . Let 99
2010n C=  and let 

1A 、 2A 、…、 nA  be all 99-element subsets of { }1,2, ,2010⋯ . Prove that 
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3. The incircle of triangle ABC touches BC at D and AB at F, intersects the line AD 

again at H and the line CF again at K. Prove that 3
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4. Let a and b be positive integers such that 1 100a b≤ < ≤ . If there exists a positive 
integer k such that ( )k kab a b+ , we say that the pair (a, b) is good. Determine the 

number of good pairs. 
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5. ABC is a triangle with a right angle at C. 1M  and 2M  are two arbitrary points 
inside ABC, and M is the midpoint of 1 2M M . The extensions of 1BM , BM and 

2BM  intersect AC at 1N , N and 2N  respectively.  

Prove that 1 1 2 2
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6. Let N∗  be the set of positive integers. Define1 2a = , and for n=1, 2, …, 
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Prove that 2
1 1n n na a a+ = − +  for n=1, 2, …. 

 

7. Let n be a positive integer. The real numbers 1a 、 2a 、…、 na  and 1r 、 2r 、…、

nr  are such that 1 2 na a a≤ ≤ ≤⋯  and 1 20 nr r r≤ ≤ ≤ ≤⋯ .  

Prove that 
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8. 1A , 2A , …, 8A  are fixed points on a circle. Determine the smallest positive 

integer n such that among any n triangles with these eight points as vertices, two 
of them will have a common side. 
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