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International Mathematics 
TOURNAMENT OF THE TOWNS 

 
Junior A-Level Paper               Fall 2008. 
1. On a 100×100 chessboard, 100 Queens are placed so that no two attack each 

other. Prove that if the board is divided into four 50×50 subboards, then there is 
at least one Queen in each subboard. 

2. Each of four stones weighs an integral number of grams. Available for use is a 
balance which shows the difference of the weights between the objects in the left 
pan and those in the right pan. Is it possible to determine the weight of each stone 
by using this balance four times, if it may make a mistake of 1 gram either way 
in at most one weighing? 

3. Serge has drawn triangle ABC and one of its medians AD. When informed of the 

ratio AD
AC

, Elias is able to prove that ∠CAB is obtuse and ∠BAD is acute. 

Determine the ratio AD
AC

 and justify your result. 

4. Baron Münchausen asserts that he has a map of Oz showing five towns and ten 
roads, each road connecting exactly two cities. A road may intersect at most one 
other road once. The four roads connected to each town are alternately red and 
yellow. Can this assertion be true? 

5. Let 1a , 2a , …, na  be positive numbers such that 1 2
1
2na a a+ + + ≤L . Prove 

that ( )( ) ( )1 21 1 1 2na a a+ + + <L . 

6. ABC is a non-isosceles triangle. E and F are points outside triangle ABC such that 
∠ECA=∠EAC=∠FAB=∠FBA=θ. The line through A perpendicular to EF 
intersects the perpendicular bisector of BC at D. Determine ∠BDC. 

7. In the infinite sequence { }na , 0 0a = . For 1n ≥ , if the greatest odd divisor of n 
is congruent modulo 4 to 1, then 1 1n na a −= + , but if the greatest odd divisor of n 
is congruent modulo 4 to 3, then 1 1n na a −= − . The initial terms are 0, 1, 2, 1, 2, 3, 
2, 1, 2, 3, 4, 3, 2, 3, 2 and 1. 
(a) Prove that the number 1 appears infinitely many times in this sequence. 
(b) Prove that every positive integer appears infinitely many times in this   

sequence. 
 
Note: The problems are worth 4, 6, 6, 6, 8, 9 and 5+5 points respectively. 


