注意：

允許學生個人，非管利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答。可直接下載而不須申請。

重版，系統地複製或大量重製這些資料的任何部分，必須獲得財團法人臺北市九章數學教育基金會的授權許可。

申請此項授權請電郵 ccmp＠seed．net．tw
Notice：
Individual students，nonprofit libraries，or schools are permitted to make fair use of the papers and its solutions．Republication，systematic copying，or multiple reproduction of any part of this material is permitted only under license from the Chiuchang Mathematics Foundation．

Requests for such permission should be made by e－mailing Mr．Wen－Hsien SUN ccmp＠seed．net．tw

International Mathematics TOURNAMENT OF THE TOWNS

Senior A-Level Paper

Fall 2008.

1. A standard 8×8 chessboard is modified by varying the distances between parallel grid lines, so that the cells are rectangles which are not necessarily squares, and do not necessarily have constant area. The ratio between the area of any white cell and the area of any black cell is at most 2 . Determine the maximum possible ratio of the total area of the white cells to the total area of the black cells.
2. Space is dissected into non-overlapping unit cubes. Is it necessarily true that for each of these cubes, there exists another one sharing a common face with it?
3. A two-player game has $n>2$ piles each initially consisting of a single nut. The players take turns choosing two piles containing numbers of nuts relatively prime to each other, and merging the two piles into one. The player who cannot make a move loses the game. For each n, determine the player with a winning strategy, regardless of how the opponent may respond.
4. In the quadrilateral $A B C D, A D$ is parallel to $B C$ but $A B \neq C D$. The diagonal $A C$ meets the circumcircle of triangle $B C D$ again at A^{\prime} and the circumcircle of triangle $B A D$ again at C^{\prime}. The diagonal $B D$ meets the circumcircle of triangle $A B C$ again at D^{\prime} and the circumcircle of triangle $A D C$ again at B^{\prime}. Prove that the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ also has a pair of parallel sides.
5. In the infinite sequence $\left\{a_{n}\right\}, a_{0}=0$. For $n \geq 1$, if the greatest odd divisor of n is congruent modulo 4 to 1 , then $a_{n}=a_{n-1}+1$, but if the greatest odd divisor of n is congruent modulo 4 to 3 , then $a_{n}=a_{n-1}-1$. The initial terms are $0,1,2,1,2,3$, $2,1,2,3,4,3,2,3,2$ and 1 . Prove that every positive integer appears infinitely many times in this sequence.
6. $\quad P(x)$ is a polynomial with real coefficients such that there exist infinitely many pairs (m, n) of integers satisfying $P(m)+P(n)=0$. Prove that the graph $y=P(x)$ has a centre of symmetry.
7. A contest consists of 30 true or false questions. Victor knows nothing about the subject matter. He may write the contest several times, with exactly the same questions, and is told the number of questions he has answered correctly each time. How can he be sure that he will answer all 30 questions correctly
(a) on his $30^{\text {th }}$ attempt;
(b) on his $25^{\text {th }}$ attempt?

Note: The problems are worth 4, 6, 6, 6, 8, 9 and $5+5$ points respectively.

