注意:

允許學生個人、非營利性的圖書館或公立學校合理使用 本基金會網站所提供之各項試題及其解答。可直接下載 而不須申請。

重版、系統地複製或大量重製這些資料的任何部分,必 須獲得財團法人臺北市九章數學教育基金會的授權許 可。

申請此項授權請電郵 <u>ccmp@seed.net.tw</u>

Notice:

Individual students, nonprofit libraries, or schools are permitted to make fair use of the papers and its solutions. Republication, systematic copying, or multiple reproduction of any part of this material is permitted only under license from the Chiuchang Mathematics Foundation.

Requests for such permission should be made by e-mailing Mr. Wen-Hsien SUN ccmp@seed.net.tw

Mathematics Essay Problems

	Country:	Name:	ID:	Score:
--	----------	-------	-----	--------

Instructions:

- Write down your name and country on every page.
- You have 90 minutes to work on this test.
- Write down your detail solutions or working process in English on the space below the question.
- Each problem is worth 3 points, and partial credit may be awarded.
- Use black or blue colour pen or pencil to write your answer.

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	Total
Score														
Score														
Score														
Score														

The following table is for jury use only.

Cour	ntry:		Name]	D:	
1.	How man	ny three-dig	git positive	integers	abc	are there	such that	$a \le b \le c$?	
			ANSWER.	:		three	e-digit po	sitive integ	<u>ers</u>

Country:		ntry: Name:	ID:
_			
	2.	Twenty-four positive numbers are arranged on a circle, ea the product of its two neighbors. If the two neighboring	1

what is the sum of all twenty-four numbers?

ANSWER:

Name:	ID:
<i>c</i> be different positive integers such smallest possible value of $a+b+$	ch that $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{7} + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$. c?
AN	SWER:
	<i>c</i> be different positive integers such smallest possible value of $a+b+$

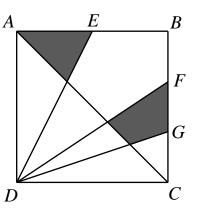
Name: _____ ID: _____

Arranged in a circle are 100 plates. Susan places a candy in a plate. Going 4. around the circle, she places a candy on every 15th plate. If she keeps doing so until the candies can no longer be placed in an empty plate, how many plates remain empty?

ANSWER:	plates
	Siares

Country:	Name:	ID:
	regest integer less than or equal to $\frac{1}{\frac{1}{\frac{1}{1987} + \dots + \frac{1}{2015}}}$?	o the expression
1985 1986	1987 2015	
	AN	ISWER:

Country:


Name: _____ ID: _____

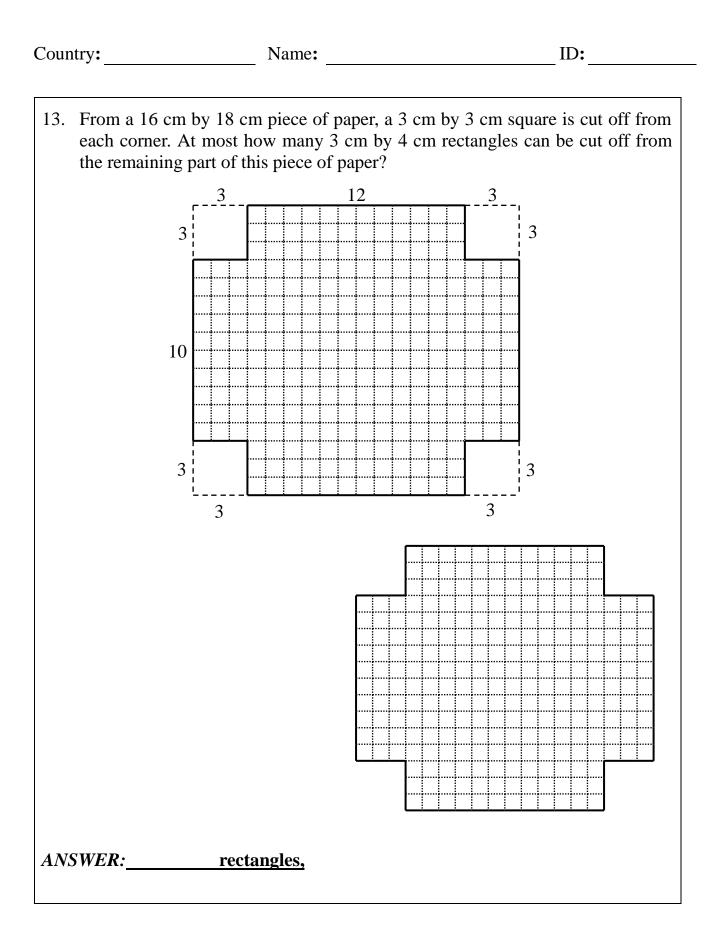
There are 81 soldiers lined up in a row with numbers from 1 to 81. In each 6. round onwards, the remaining soldiers call out 1, 2, 3, 1, 2, 3, 1, 2, 3, The soldiers who count 1 and 3 are removed from the line. The process continues until only one soldier is left on the line. What is the number of that soldier left on the line?

ANSWER:

Country:_____ Name: _____ ID:_____

The figure below shows a square ABCD of side 6 cm. Given that E is the 7. midpoint of AB, points F and G are on BC so that BF = FG = GC. What is the total area of the shaded region in cm²?

ANSWER:	


Country:	Name:	ID:
BC is Suppo	ABC, $\angle ACB = 45^{\circ}$ and $BC = 24$ cm. 7 is 16 cm. Point B' , C' are on the 1 pose $AB = A'B'$, $AC = A'C'$, as shown C' is $\frac{1}{3}$ of the area of $\triangle ABC$, what is	ine of <i>BC</i> such that $BC = B'C'$. in the figure below. If the area of
	3	A A' A' B C' C B'
	A	NSWER: cm

Country:		Name:	ID:		
9.	is not zero, whil four-digit number	e the hundreds digit is larged is obtained from the original	arger than the units digit, which ger than the tens digit. A new I number by reversing the order		
	of the digits. How are there?	v many possible differences	of the original and new number		

Count	y: Name:	ID:			
	There are three lowest-term fractions, the ratio of their numerator are positive integers in the ratio of $3:2:4$ while the ratio of their denominator are positive				
	integers in the ratio of $5:9:15$. The sum of these three fractions is $\frac{28}{45}$.				
	What is the sum of their denominator?				
	ANSW	'ER:			

Counti	y: Name:			ID:
	2×2 are removed. How many	/ trian	gles	4 grid so that the center portion of are there in total that have vertices t least 1 interior angle equal to 45°?
	•	•	•	•
	•			•
	·	•	·	•
			1	ANSWER: triangles

Country:	Name:	ID:
12. In $\triangle ABC$, point <i>M</i>	, points D and E are on BC such t	ID: that BD: DE: $EC = 2:1:1$. The <i>A</i> intersects <i>AD</i> , <i>AE</i> at point <i>H</i> , <i>G</i> A = B = C
	ANSWER: <u>BH : HG</u>	: GM = : :

