注意：

允許學生個人，非管利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答。可直接下載而不須申請。

重版，系統地複製或大量重製這些資料的任何部分，必須獲得財團法人臺北市九章數學教育基金會的授權許可。

申請此項授權請電郵 ccmp＠seed．net．tw
Notice：
Individual students，nonprofit libraries，or schools are permitted to make fair use of the papers and its solutions．Republication，systematic copying，or multiple reproduction of any part of this material is permitted only under license from the Chiuchang Mathematics Foundation．

Requests for such permission should be made by e－mailing Mr．Wen－Hsien SUN ccmp＠seed．net．tw

Mathematics Essay Problems

Country:
Name: \qquad ID: \qquad Score:

Instructions:

- Write down your name and country on every page.
- You have 90 minutes to work on this test.
- Write down your detail solutions or working process in English on the space below the question.
- Each problem is worth 3 points, and partial credit may be awarded.
- Use black or blue colour pen or pencil to write your answer.

The following table is for jury use only.

No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	Total
Score														
Score														
Score														
Score														

ESSAY PROBLEMS

Country: \qquad Name:
ID:

1. How many three-digit positive integers $\overline{a b c}$ are there such that $a \leq b \leq c$?

ESSAY PROBLEMS

Country: \qquad Name: \qquad ID: \qquad
2. Twenty-four positive numbers are arranged on a circle, each number is equal to the product of its two neighbors. If the two neighboring numbers are 3 and 4, what is the sum of all twenty-four numbers?
\qquad

ESSAY PROBLEMS

Country:
Name:
ID:
3. Let a, b and c be different positive integers such that $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{7}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. What is the smallest possible value of $a+b+c$?

ESSAY PROBLEMS

\qquad Name: \qquad ID: \qquad
4. Arranged in a circle are 100 plates. Susan places a candy in a plate. Going around the circle, she places a candy on every 15 th plate. If she keeps doing so until the candies can no longer be placed in an empty plate, how many plates remain empty?

ESSAY PROBLEMS

Country: Name: ID:
5. What is the largest integer less than or equal to the expression

$$
\frac{1}{\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+\cdots+\frac{1}{2015}} \text { ? }
$$

ESSAY PROBLEMS

\qquad ID: \qquad
6. There are 81 soldiers lined up in a row with numbers from 1 to 81 . In each round onwards, the remaining soldiers call out $1,2,3,1,2,3,1,2,3, \ldots$ The soldiers who count 1 and 3 are removed from the line. The process continues until only one soldier is left on the line. What is the number of that soldier left on the line?

ESSAY PROBLEMS

Country: \qquad Name: \qquad ID: \qquad
7. The figure below shows a square $A B C D$ of side 6 cm . Given that E is the midpoint of $A B$, points F and G are on $B C$ so that $B F=F G=G C$. What is the total area of the shaded region in cm^{2} ?

ESSAY PROBLEMS

Country: \qquad Name: \qquad ID: \qquad
8. In $\triangle A B C, \angle A C B=45^{\circ}$ and $B C=24 \mathrm{~cm}$. The length of the altitude from A to $B C$ is 16 cm . Point B^{\prime}, C^{\prime} are on the line of $B C$ such that $B C=B^{\prime} C^{\prime}$. Suppose $A B=A^{\prime} B^{\prime}, A C=A^{\prime} C^{\prime}$, as shown in the figure below. If the area of $\triangle O C C^{\prime}$ is $\frac{1}{3}$ of the area of $\triangle A B C$, what is the length of $B B^{\prime}$, in cm ?

ESSAY PROBLEMS

\qquad Name: \qquad ID: \qquad
9. In a four-digit number, the thousands digit is larger than the units digit, which is not zero, while the hundreds digit is larger than the tens digit. A new four-digit number is obtained from the original number by reversing the order of the digits. How many possible differences of the original and new number are there?

ESSAY PROBLEMS

10. There are three lowest-term fractions, the ratio of their numerator are positive integers in the ratio of $3: 2: 4$ while the ratio of their denominator are positive integers in the ratio of $5: 9: 15$. The sum of these three fractions is $\frac{28}{45}$.
What is the sum of their denominator?

ESSAY PROBLEMS

Country: \qquad Name: \qquad ID: \qquad
11. Sixteen points are on the sides of a 4×4 grid so that the center portion of 2×2 are removed. How many triangles are there in total that have vertices chosen from those remaining points and at least 1 interior angle equal to 45° ?

ESSAY PROBLEMS

Country: \qquad Name: \qquad ID: \qquad
12. In $\triangle A B C$, points D and E are on $B C$ such that $B D: D E: E C=2: 1: 1$. The point M is on $A C$ such that $\frac{C M}{M A}=\frac{1}{3} . B M$ intersects $A D, A E$ at point H, G respectively. Find $B H: H G: G M$.

ESSAY PROBLEMS

Country: \qquad Name: \qquad ID: \qquad
13. From a 16 cm by 18 cm piece of paper, a 3 cm by 3 cm square is cut off from each corner. At most how many 3 cm by 4 cm rectangles can be cut off from the remaining part of this piece of paper?

