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Instructions: 
 Do not turn to the first page until you are told to do so. 
 Remember to write down your team name in the space indicated on every page. 
 There are 10 problems in the Team Contest, arranged in increasing order of 

difficulty. Each question is printed on a separate sheet of paper. Each problem is 
worth 40 points and complete solutions of problem 2, 4, 6, 8 and 10 are required 
for full credits. Partial credits may be awarded. In case the spaces provided in 
each problem are not enough, you may continue your work at the back page of 
the paper. Only answers are required for problem number 1, 3, 5, 7 and 9. 

　 The four team members are allowed 10 minutes to discuss and distribute the 
first 8 problems among themselves. Each student must attempt at least one 
problem. Each will then have 35 minutes to write the solutions of their allotted 
problem independently with no further discussion or exchange of problems. The 
four team members are allowed 15 minutes to solve the last 2 problems together.

 Diagrams are NOT drawn to scale. They are intended only as aids.  
 No calculator or calculating device or electronic devices are allowed. 
 Answer must be in pencil or in blue or black ball point pen. 
 All papers shall be collected at the end of this test. 
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1. The geometric magic square in the diagram below on the left is based on the 
ordinary magic square in the diagram below on the right. The latter is shaded. Of 
course, the total number of unit squares in the three pieces in each row, column 
and diagonal is equal to 15, known as magic constant. If that is all, we are not 
doing anything new. Instead, the magic constant is no longer a number but a 
figure, which can be formed with the three pieces in each row, column and 
diagonal. Rotations and reflections of the pieces are allowed. The diagram below 
on the right shows that the magic constant can be a 3 5×  rectangle. 

 
 
 
 
 
 
 
 
 

 
 
 

Show that the figure in the diagram below can also be the magic constant for the 
geometric magic square above. 

  
 
 
 Rows Columns Diagonals 

ANSWER:  

Magic Square Rows Columns Diagonals 

8 1 6
3 5 7
4 9 2
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2. Let a be a positive integer such that 2 2a b a+ −  is a multiple of ab for some 
positive integer b relatively prime to a. Find the maximum value of a. 

  

ANSWER:  
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3. Let ( )S x  denotes the sum of the digits in the decimal representation of a 

positive integer x.  
Find the largest value of x such that ( ) ( ( )) ( ( ( ))) 2015x S x S S x S S S x+ + + = . 

  
 

ANSWER:  
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4. A two-player game starts with the number 111 on the blackboard. Anna goes first, 

followed by Boris, taking turns alternately thereafter. In each move, Anna may 
reduce the number on the blackboard by 1 or 10, while Boris may reduce it by 1, 
2, 8 or 10. The player who reduces the number to 0 wins. Give the winning 
strategy for Boris. 

 
 

ANSWER:  
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5. In how many different ways can you choose three squares in an 8 8×  

chessboard so that every two of them share at least one corner? 
 
 
 
 
 
 
 
 
 
 

  

ANSWER:  ways
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6. Each square of a 4 4×  table is filled with a different one of the positive integers 
1, 2, 3, …, 15, 16. For every two squares sharing a side, the numbers in them are 
added and the largest sum is recorded. What is the minimum value of this largest 
sum? 

 
 
 

  

ANSWER:  
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7. A city is divided into 100 squares in a 10 10×  configuration. Each police squad 
occupies two squares which share exactly one corner. What is the minimum 
number of police squads so that every square not occupied by a police squad 
must share a side with a square occupied by a police squad? 

 
          

          

          

          

          

          

          

          

          

          

ANSWER: police squads
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8. ABC is an acute triangle. H is the foot of the altitude from C to AB. M and N are 

the respective feet of perpendicular from H to BC and CA. The circumcentre of 
ABC lies on MN. If the circumradius of ABC is 2 cm, what is the length of CH, 
in cm? 

  
 

 
 
  

ANSWER: cm

A 

N 

M 

H 

C 

B 

O 
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9. Find the number of ways of colouring 12 different squares of a 6 4×  chessboard 
such that there are two coloured squares in each row and three in each column. 

 
 
 
 
 

 
  

ANSWER: ways
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10. What is the minimum number of fourth powers of integers, not necessarily 
distinct, such that their sum is 2015? 
 

 

ANSWER:  


