注意：

允許學生個人，非管利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答。可直接下載而不須申請。

重版，系統地複製或大量重製這些資料的任何部分，必須獲得財團法人臺北市九章數學教育基金會的授權許可。

申請此項授權請電郵 ccmp＠seed．net．tw
Notice：
Individual students，nonprofit libraries，or schools are permitted to make fair use of the papers and its solutions．Republication，systematic copying，or multiple reproduction of any part of this material is permitted only under license from the Chiuchang Mathematics Foundation．

Requests for such permission should be made by e－mailing Mr．Wen－Hsien SUN ccmp＠seed．net．tw

IYMC-Mathematica 2016

2nd to 5th December 2016

International Young Mathematicians' Convention Senior Level

Individual Contest

1. Find the number of all real solutions of the system of equations

$$
\begin{aligned}
& \left(x_{3}+x_{4}+x_{5}\right)^{5}=3888 x_{1} \\
& \left(x_{4}+x_{5}+x_{1}\right)^{5}=3888 x_{2} \\
& \left(x_{5}+x_{1}+x_{2}\right)^{5}=3888 x_{3} \\
& \left(x_{1}+x_{2}+x_{3}\right)^{5}=3888 x_{4} \\
& \left(x_{2}+x_{3}+x_{4}\right)^{5}=3888 x_{5}
\end{aligned}
$$

Solution

By symmetry, we may assume that $x_{1}=\max \left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Then

$$
\left(x_{3}+x_{4}+x_{5}\right)^{5}=3888 x_{1} \geq 3888 x_{2}=\left(x_{4}+x_{5}+x_{1}\right)^{5}
$$

This implies that $x_{3}+x_{4}+x_{5} \geq x_{4}+x_{5}+x_{1}$ so that $x_{3} \geq x_{1}$. Hence $x_{3}=x_{1}$. Similarly, we can prove that $x_{4}=x_{2}=x_{5}=x_{3}=x_{1}$. The real roots of $\left(3 x_{1}\right)^{5}=3888 x_{1}$ are $x_{1}=0$, 2 and -2 . Hence the system has three solutions, $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(0,0,0,0$, $0),(2,2,2,2,2)$ and ($-2,-2,-2,-2,-2)$.
2. What is the simplified value of $\sqrt{5+\sqrt{5^{2}+\sqrt{5^{4}+\sqrt{5^{8}+\cdots}}}}$? 【Submitted by

Philippines 】

Solution

Suppose $x=\sqrt{5+\sqrt{5^{2}+\sqrt{5^{4}+\sqrt{5^{8}+\cdots}}}}$, then

$$
\begin{aligned}
x^{2} & =5+\sqrt{5^{2}+\sqrt{5^{4}+\sqrt{5^{8}+\cdots}}} \\
& =5+\sqrt{5} \times \sqrt{5+\sqrt{5^{2}+\sqrt{5^{4}+\sqrt{5^{8}+\cdots}}}} \\
& =5+\sqrt{5} x
\end{aligned}
$$

i.e. $x^{2}-\sqrt{5} x-5=0$.

Since $\sqrt{5+\sqrt{5^{2}+\sqrt{5^{4}+\sqrt{5^{8}+\cdots}}}}>0, x=\frac{\sqrt{5}+\sqrt{5+20}}{2}=\frac{\sqrt{5}+5}{2}$.
ANS: $\frac{\sqrt{5}+5}{2}$
3. If a is a positive integer so that $a^{2}+2016^{2}$ is divisible by $2016 a$, find the number of the possible values of a.

Solution

Let p be any prime divisor of a. Then p divides $2016 a$, which in turn divides $a^{2}+2016^{2}$. Hence p is also a prime divisor of 2016. Suppose p^{m} is the highest power of p which divides a, and p^{n} is the highest power of p which divides 2016 . We may assume that $m \geq n$. Now $2016 a$ is divisible by p^{m+n} but $a^{2}+2016^{2}$ is not divisible by $p^{2 n+1}$. Hence $m+n<2 n+1$ or $m \leq n$, so that $m=n$. Since p is an arbitrary prime divisor of a and 2016, we have $a=2016$. Hence there is only one possible value of a.

Answer: 1
4. Let $f(x)=\frac{x+20}{x}$ and $f_{n}(x)=f(f(\cdots(f(x)) \cdots))$ be the n-fold composite off.

For example, $f_{2}(x)=\frac{\frac{x+20}{x}+20}{\frac{x+20}{x}}=\frac{21 x+20}{x+20}$ and $f_{3}(x)=\frac{\frac{21 x+20}{x+20}+20}{\frac{21 x+20}{x+20}}=\frac{41 x+420}{21 x+20}$.
Let S be the complete set of real solutions of $f_{n}(x)=x$. What is the maximal number of the elements in S ?

Solution

We have, for all positive integral $n, f_{n}(x)=f\left(f_{n-1}(x)\right)=\frac{f_{n-1}(x)+20}{f_{n-1}(x)}=x$.
Then $x f_{n-1}(x)=f_{n-1}(x)+20$, i.e. $f_{n-1}(x)=\frac{20}{x-1}=x$.
So $x^{2}-x-20=0$, i.e. $(x+4)(x-5)=0$. Solving the equation and we can get $x=-4$ or 5 . Hence there are two elements in S and the maximal number is 5 .

Answer: 5
5. $\quad D$ and E are points on the sides $B C$ and $C A$, respectively, of triangle $A B C$. If $\angle A D C=130^{\circ}, \angle B E A=25^{\circ}$ and $B E$ bisects $\angle A B C$, as shown in the diagram below. Find the measure of $\angle E D C$, in degrees.

Solution

Extend $B A$ to F. We have

$$
\begin{aligned}
& \angle F A E-\angle D A E \\
= & (\angle A B C+\angle B C A)-\left(50^{\circ}-\angle B C A\right) \\
= & 2\left(\angle E B C+\angle E C B-25^{\circ}\right) \\
= & 0
\end{aligned}
$$

Hence E is an excentre of triangle $B A D$, so that $\angle E D C=\frac{1}{2} \angle A D C=65^{\circ}$.
6. The sum of ten numbers on a circle is 2016 . The sum of any three numbers in a row is at least 585 . Determine the minimal number n such that for any such set of ten, none of them is greater than n.

Solution

Consider the largest number in any such set of ten numbers. The other nine form three triples in a row, each with sum at least 585. Hence the largest number is at most $2016-3 \times 585=261$. If $261,261,261,63,261,261,63,261,261$ and 63 are arranged in cyclic order on a circle, the sum of any three numbers in a row is indeed at least 585 , and the largest of them is 261 . Hence the minimum value of n is 261 .

Answer: 261
7. Anna tosses 2016 coins and Boris tosses 2017 coins. Whoever has more heads wins. If they have the same number of heads, then Anna wins. What is the probability of Anna winning?

Solution:

Let Boris first toss only 2016 coins. There are three possible outcomes.
(1) Anna has more heads than Boris.
(2) Boris has more heads than Anna.
(3) They have the same number of heads.

If (1) occurs, then Anna wins, and if (2) occurs, then Boris wins, regardless of the outcome of Boris' last toss. If (3) occurs, then the winner will be decided by the outcome of Boris' last toss. If it is heads then Boris wins. If not, Anna wins. By symmetry, (1) and (2) are equally likely to occur and either player is equally likely to win if (3) occurs. Hence overall, Anna and Boris are equally likely to win, i.e. the probability of Anna winning is $\frac{1}{2}$.

Answer: $\frac{1}{2}$
8. In triangle $A B C, A C=B C . D$ is a point on $A B$ such that the inradius of triangle $C A D$ is equal to the exradius of triangle $B C D$ opposite C, as shown in the diagram below. If the length of the altitude $A H$ is 36 cm , find the length of this common radius.

Solution

Let P, Q and R be the respective points of tangency of the incircle of $A C D$ with $A C$, $C D$ and $D A$. Let K, L and M be the respective points of tangency of the excircle of $B C D$ with $B C, C D$ and $D B$. Let X be the centre of the incircle of $A C D$ and Y be the centre of the excircle of $B C D$. Let r be the common radius of the two circles. Then

$$
\begin{aligned}
& {[A B C]=\frac{1}{2} A H \times B C,[A C D]=[A X C]+[C X D]+[D X A]=\frac{1}{2} r(A C+C D+D A) \text { and }} \\
& {[B C D]=[B C Y]+[C D Y]-[D B Y]=\frac{1}{2} r(B C+C D-D B) . \text { We have }} \\
& \\
& \\
& A C+C D+D A+B C+C D-D B \\
& =
\end{aligned}
$$

It follows that $r=\frac{1}{4} A H=9 \mathrm{~cm}$.

