注意：

允許學生個人，非管利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答。可直接下載而不須申請。

重版，系統地複製或大量重製這些資料的任何部分，必須獲得財團法人臺北市九章數學教育基金會的授權許可。

申請此項授權請電郵 ccmp＠seed．net．tw
Notice：
Individual students，nonprofit libraries，or schools are permitted to make fair use of the papers and its solutions．Republication，systematic copying，or multiple reproduction of any part of this material is permitted only under license from the Chiuchang Mathematics Foundation．

Requests for such permission should be made by e－mailing Mr．Wen－Hsien SUN ccmp＠seed．net．tw

International Young Mathematicians' Convention Senior Level Team Contest
 Time limit: 60 minutes

Information:

- You are allowed 60 minutes for this paper, consisting of 6 questions printed on separate sheets. For questions 1, 3 and 5, only numerical answers are required. For questions 2, 4 and 6, full solutions are required.
- Each question is worth 40 points. For odd-numbered questions, no partial credits are given. There are no penalties for incorrect answers, but you must not give more than the number of answers asked for. For questions asking for several answers, full credit will only be given if all correct answers are found. For even-numbered questions, partial credits may be awarded.
- Diagrams shown may not be drawn to scale.

Instructions:

- Write down your team's name on the spaces provided on every question sheet.
- Enter your answers in the spaces provided after individual questions on the question paper.
- During the first 10 minutes, the three team members examine the questions together, with discussion. Then they distribute the questions among themselves, with each team member allotted at least 1 question.
- During the next 50 minutes, the three team members write down the solutions to their allotted problems on the respective question sheets, with no further communication among themselves.
- You may not use instruments such as protractors, calculators and electronic devices.
- At the end of the contest, you must hand in the envelope containing all question sheets and all scrap papers.

Team: \qquad Score:
For Juries Use Only

No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Total
Score							
Score							

The Seventh International Young Mathematicians' Convention

 IYMC-Mathematica 2016

 IYMC-Mathematica 2016}

2nd to 5th December 2016

International Young Mathematicians' Convention Senior Level TEAM CONTEST

Team :
Score :

1. If x and y are positive real numbers, find the smallest value of

$$
\sqrt{225-15 \sqrt{2} x+x^{2}}+\sqrt{200-20 y+y^{2}}+\sqrt{x^{2}-\sqrt{2} x y+y^{2}} .
$$

The Seventh International Young Mathematicians' Convention

 IYMC-Mathematica 2016

 IYMC-Mathematica 2016

 2nd to 5th December 2016

 2nd to 5th December 2016}

International Young Mathematicians' Convention Senior Level

 TEAM CONTEST

 TEAM CONTEST}

Team :
Score : \qquad
2. The sum of 2016 real numbers is 2017 and each of them is less than $\frac{2017}{2015}$. Prove that the sum of any two of the numbers is greater than or equal to $\frac{2017}{2015}$.

The Seventh International Young Mathematicians' Convention

 IYMC-Mathematica 2016

 IYMC-Mathematica 2016

 2nd to 5th December 2016

 2nd to 5th December 2016}

International Young Mathematicians' Convention Senior Level TEAM CONTEST

Team :

Score :
3. There are 2016 unit cubes, each of which can be painted black or white. How many values of n is it possible to construct an $n \times n \times n$ cube with n^{3} unit cubes such that each cube shares a common face with exactly three cubes of the opposite colour?

IYMC-Mathematica 2016

2nd to 5th December 2016

International Young Mathematicians' Convention Senior Level
 TEAM CONTEST

Team :
Score : \qquad
4. P is the midpoint of the arc $A C$ of the circumcircle of an equilateral triangle $A B C$. M is another point on this arc and N is the midpoint of $B M . K$ is the projection of P on the line $M C$, as shown in the diagram below. If the length of $N A$ is 19 cm , find the length of $N K$ in cm .

IYMC-Mathematica 2016

2nd to 5th December 2016

International Young Mathematicians' Convention Senior Level

 TEAM CONTEST

 TEAM CONTEST}

Team :
Score : \qquad
5. Let S_{n} denote the n-th sequence so that every word in a sequence consists only of the letters A and B. The first word has only one letter A. For $k \geq 2$, the k-th word is obtained from the $(k-1)$-th by simultaneously replacing every A by $A A B$ and every B by A. Then every word is an initial part of the next word. For example, $S_{1}=A, S_{2}=A A B, S_{3}=A A B A A B A$ and $S_{4}=A A B A A B A A A B A A B A A A B$.
Find the number of $A \mathrm{~s}$ in S_{10}.
\qquad

IYMC-Mathematica 2016

2nd to 5th December 2016

International Young Mathematicians' Convention Senior Level
 TEAM CONTEST

Team :
Score : \qquad
6. D, E and F are points on the sides $B C, C A$ and $A B$, respectively, of triangle $A B C$ such that $A D, B E$ and $C F$ are concurrent. The area of triangle $A B C$ is $2016 \mathrm{~cm}^{2}$. If there exists a point P such that both $B D P E$ and $A F C P$ are parallelograms, as shown in the diagram below. Find the area of triangle of $D E F$, in cm^{2}.

