歡迎來到 財團法人台北市九章數學教育基金會
首頁Home 新聞區News 討論區Forum 檔案下載Downloads
重要公告

2024 澳洲AMC數學能力檢定


2023-2024年國際中小學數學能力檢測(IMAS)


2024小學數學世界邀請賽(PMWC 2024,香港)與2024國際小學數學競賽(InIMC 2024,印度Lucknow市)


2024青少年數學國際城市邀請賽(InIMC 2024,印度Lucknow市))


第20屆國際小學數學及自然科學奧林匹亞 (20th IMSO)數學組

第20屆國際小學數學及自然科學奧林匹亞 (20th IMSO)自然科學組


2019國際青少年數學奧林匹亞 (ITMO 2019,印度 Lucknow市)

歷史公告

澳洲AMC數學能力檢定

2023 澳洲AMC數學能力檢定

2022 澳洲AMC數學能力檢定


國際中小學數學能力檢測(IMAS)

IMAS 2022

IMAS 2021


小學數學競賽

小學數學世界邀請賽與國際小學數學競賽

PMWC 2023與BIMC 2023

PMWC 2022與IIMC 2022

國際小學數學及自然科學奧林匹亞(IMSO)

19th IMSO

18th IMSO


中學數學競賽

青少年數學國際城市邀請賽

BIMC 2023

IIMC 2022

國際青少年數學奧林匹亞(ITMO )

ITMO 2017

ITMO 2015

國際青少年數學家會議(IYMC )

IYMC 2022

IYMC 2016

越南河內數學邀請賽(HOMC )

HOMC 2019


欲查詢其餘歷史公告,可利用首頁右側之關鍵字搜尋功能
目前並未有最新新聞!
主選單
· 回首頁
· 新聞區
· 討論區
· 檔案下載Downloads
· 網站連結
· 電子相薄
· 夥伴網站
· 精華文章
登入

帳號

密碼

遺失密碼嗎?

尚未有帳號嗎?
何不馬上註冊?
/  討論區主頁10
   /  學習討論區
      /  為何「正正得正,正負得負,負負得正」?
限會員
到 ( 1 | 2 下頁 )
發布者內容列
sunny3311
Not too shy to talk



註冊日: 2007-03-13
發表數: 22


 為何「正正得正,正負得負,負負得正」?

以前唸國中的時候,老師這麼教我們背口訣。背了這個口訣後,我一路過關斬將,唸到大學畢業。

現在,我自己的孩子也上國中了,我才發現孩子的老師,也是這麼教的。至於為什麼,好像都沒有人解釋過耶。

各位高手們,可以為我釋疑嗎? 感激不盡!!!

 2007-07-25 17:07個人資料
bubupin
Home away from home



註冊日: 2007-03-13
發表數: 353


 Re: 為何「正正得正,正負得負,負負得正」?

  如果不從數學角度來解釋,也不用太鑽牛角尖的話....

正正得正:好人眼中的好人就算好人,眾人以為美善的事他去做,他是好人中公認的好人
得到正面的利益就是利上加利
正負得負:好人眼中的壞人就算壞人,好人心中總以公平為量尺,明白分辨錯誤所在
得到負面的效果就是虧損
負正得負:壞人眼中的好人其實是壞人,思想偏差的小混混,總認為大哥對他很好,免費帶他鬼混
消去正面的利益就是損失
負負得正:壞人眼中的壞人其實是好人,例如小偷認為最壞的就是警察,總是找他麻煩
減少負面的損失就是蒙利

  至於世間好壞如何分辨,碰到界限就會產生模糊,遇到老和尚對你說:失就是得,得就是失,有失才有得,有得或有失,那你就別跟他討論數學了.

 2007-07-25 21:46個人資料
sunny3311
Not too shy to talk



註冊日: 2007-03-13
發表數: 22


 Re: 為何「正正得正,正負得負,負負得正」?

哈! 不知道對不對?

開玩笑的。

以前唸書的時候,老師這麼說,我們就這麼背。也沒想過為什麼會這樣。反倒是現在孩子上國中了,我才開始有這個疑問。問過孩子,他們說老師也沒有解釋原因。難道… 難道… 難道老師們也跟我一樣,是這樣不知其所以然的長大的嗎?

 2007-07-26 16:09個人資料
孫文先
Moderator



註冊日: 2002-07-30
發表數: 1094


 Re: 為何「正正得正,正負得負,負負得正」?


這是建中資優班退休教師徐正梅老師的解說方式:

3)負×負
游泳池“放水”時,如果每小時水位下降12公分,那麼“3小時前”的水位比現在的水位高或低多少公分?

由上圖可知:水位1小時前比現在「高12公分」;2小時前比現在「高24公分」;3小時前比現在「高36公分」。
如果用「-3小時」表示「3小時前」,用「-12公分」表示「下降12公分」,那麼,3小時前水位總變化量可以用乘法列式為

(─12)x(─3)=36
由上面(1)∼(3)的討論,我們還可發現:
乘法法則

兩個同號的整數相乘,其結果是正數;兩個異號的整數相乘,其結果是負數。


另一方面,利用前面計算「水位總變化量」的乘式,進一步來說明「(-1)乘以整數」與「0乘以整數」的結果。

每小時水位的升降
(升用「+」降用「-」) × 時數
(前用「-」後用「+」) = 水位總變化量
(升用「+」降用「-」)
↓ ↓ ↓
(12) × (-1) = -12 (Ⅰ)
(-1) × (12) = -12 (Ⅱ)
(-12) × (-1) = 12 (Ⅲ)
(-1) × (-12) = 12 (Ⅳ)

(Ⅰ)∼(Ⅳ)中的12或(-12)換成一般的數a,等式仍然成立,故得:
一個數a乘上(-1)就變成a的相反數,即 (-1)×a=-a=a×(-1)。


_________________
孫文先 敬上

 2007-08-05 10:11個人資料傳送 Email 給 孫文先
mathematical2005
Just can't stay away



註冊日: 2005-05-17
發表數: 117
China

 Re: 為何「正正得正,正負得負,負負得正」?

所以負負得正是一種時空的變化囉


_________________
The art of doing mathematics consists in finding that special case which contains all the germs of generality

 2007-08-06 10:27個人資料
mathematical2005
Just can't stay away



註冊日: 2005-05-17
發表數: 117
China

 Re: 為何「正正得正,正負得負,負負得正」?

可否有數學的證明


_________________
The art of doing mathematics consists in finding that special case which contains all the germs of generality

 2007-08-06 10:28個人資料
bill2002
Just can't stay away



註冊日: 2002-12-29
發表數: 71
偉大的地球

 Re: 為何「正正得正,正負得負,負負得正」?

引文:

孫文先 寫道:

這是建中資優班退休教師徐正梅老師的解說方式:

3)負×負
游泳池“放水”時,如果每小時水位下降12公分,那麼“3小時前”的水位比現在的水位高或低多少公分?

由上圖可知:水位1小時前比現在「高12公分」;2小時前比現在「高24公分」;3小時前比現在「高36公分」。
如果用「-3小時」表示「3小時前」,用「-12公分」表示「下降12公分」,那麼,3小時前水位總變化量可以用乘法列式為

(─12)x(─3)=36
由上面(1)∼(3)的討論,我們還可發現:
乘法法則

兩個同號的整數相乘,其結果是正數;兩個異號的整數相乘,其結果是負數。


另一方面,利用前面計算「水位總變化量」的乘式,進一步來說明「(-1)乘以整數」與「0乘以整數」的結果。

每小時水位的升降
(升用「+」降用「-」) × 時數
(前用「-」後用「+」) = 水位總變化量
(升用「+」降用「-」)
↓ ↓ ↓
(12) × (-1) = -12 (Ⅰ)
(-1) × (12) = -12 (Ⅱ)
(-12) × (-1) = 12 (Ⅲ)
(-1) × (-12) = 12 (Ⅳ)

(Ⅰ)∼(Ⅳ)中的12或(-12)換成一般的數a,等式仍然成立,故得:
一個數a乘上(-1)就變成a的相反數,即 (-1)×a=-a=a×(-1)。


能不能以在簡單的方式說明?這有點看不懂





_________________
數學有好玩之處,大家一起愛數學吧!

 2007-08-06 10:39個人資料
bill2002
Just can't stay away



註冊日: 2002-12-29
發表數: 71
偉大的地球

 Re: 為何「正正得正,正負得負,負負得正」?

引文:

mathematical2005 寫道:
所以負負得正是一種時空的變化囉


你的意思是什麼


_________________
數學有好玩之處,大家一起愛數學吧!

 2007-08-07 10:05個人資料
mathematical2005
Just can't stay away



註冊日: 2005-05-17
發表數: 117
China

 Re: 為何「正正得正,正負得負,負負得正」?

我的意思是一定要用時間前的變化量來解釋嗎


_________________
The art of doing mathematics consists in finding that special case which contains all the germs of generality

 2007-08-07 10:16個人資料
sunny3311
Not too shy to talk



註冊日: 2007-03-13
發表數: 22


 Re: 為何「正正得正,正負得負,負負得正」?

謝謝孫老師和徐正梅老師的解釋,回答了我部份的疑問。

但是誠如mathematical2005所說的,難道「負負得正是一種時空的變化」嗎?那它運用在因式分解時,又該如何解釋呢?

 2007-08-08 21:28個人資料
henry654
Just popping in



註冊日: 2007-08-26
發表數: 3
Earth

 Re: 為何「正正得正,正負得負,負負得正」?

2樓的妙阿!!

 2007-08-26 14:50個人資料傳送 Email 給 henry654拜訪網站加入聯絡清單aimyimmsnm
wisely
Just popping in



註冊日: 2008-10-08
發表數: 1
TWN & HKG

 Re: 為何「正正得正,正負得負,負負得正」?

其實這個也可以用數線圖的方式來敘述:
例如:"數線上(-1)單位的(-3)倍是多少?"

既然"+"是正向,"-"是反向,那麼畫數線起來就快很多了

以上是小弟的拙見


_________________

 2009-01-30 22:51個人資料拜訪網站
WENDYCHI
Home away from home



註冊日: 2007-08-27
發表數: 987
^^^ ( ^_^ |||) ^^^

 Re: 為何「正正得正,正負得負,負負得正」?

舉個例子...
3*3=9 (正正得正)
-
3*3=9
3*2=9-3=6
3*1=6-3=3
3*0=3-3=0
3*(-1)=0-3=(-3)
3*(-2)=(-3)-3=(-6)
3*(-3)=(-6)-3=(-9) (正負得負)
--
3*(-3)=(-9)
2*(-3)=(-9)-(-3)=(-6)
1*(-3)=(-6)-(-3)=(-3)
0*(-3)=(-3)-(-3)=0
(-1)*(-3)=0-(-3)=3
(-2)*(-3)=3-(-3)=6
(-3)*(-3)=(-3)-(-3)=9 (負負得正)


_________________
BBBB----OOO---BBBB-----SSSS---OOO----N------N
B-----B-O-----O--B-----B-S---------O-----O---NN----N
BBBB--O------O-BBBB-----SSS---O------O--N--N--N
B-----B-O-----O--B-----B---------S-O-----O---N----NN
BBBB----OOO---BBBB----SSSS----OOO----N------N

超混的俱樂部成員

 2009-01-30 23:17個人資料
孫文先
Moderator



註冊日: 2002-07-30
發表數: 1094


 Re: 為何「正正得正,正負得負,負負得正」?

您要證明負負得正,在證明過程中您又已經使用負負得正的結果,犯了循環論證的錯誤。

2*(-3)=(-9)-(-3)=(-6)
1*(-3)=(-6)-(-3)=(-3)
0*(-3)=(-3)-(-3)=0
(-1)*(-3)=0-(-3)=3
(-2)*(-3)=3-(-3)=6
(-3)*(-3)=(-3)-(-3)=9

以上式子為什麼(-9)-(-3)=(-6)?都必須用到負負得正的結論。


_________________
孫文先 敬上

 2009-01-31 11:04個人資料傳送 Email 給 孫文先
wanghp
Quite a regular



註冊日: 2006-09-10
發表數: 42


 Re: 為何「正正得正,正負得負,負負得正」?

這是葛老爹在書中的解釋:
(忘了是哪一本了)


假設好人是正的 壞人是負的


如果多幾個好人 (正乘以正)
這個世界就更美好了 (得到正的)

如果教幾個好人去自殺 (正乘以負)
這個世界就變黑暗了 (得到負的)

如果多幾個壞人 (負乘以正)
這個世界也會變得更黑暗 (得到負的)

如果教幾個壞人去自殺 (負乘以負)
這個世界就會非常美好 (得到正的)


這個解釋好不好因人而異
重點是接下來那一句......


葛女孩(就是葛老爹的女兒)問他爸爸說:
如果那些壞人不去自殺怎麼辦??



那就用選票證明他是錯的......(這是我自己加的)


_________________
Simple

 2009-02-05 15:51個人資料
openopentw
Just popping in



註冊日: 2008-03-07
發表數: 10


 Re: 為何「正正得正,正負得負,負負得正」?

「正正得正,正負得負,負負得正」

可以用加法來表示:

偶數=正 ,奇數=負

2+2=4(正正得正)

2+1=3(正負得負)

1+1=2(負負得正)

以上是我自己搞不清楚正數、負數時會用的方法,
很有用的,用久了就自動記住了


_________________
~~天才 & 白痴~~

 2009-02-06 20:35個人資料
j2006mouse
Just can't stay away



註冊日: 2008-03-14
發表數: 121
新北市

 Re: 為何「正正得正,正負得負,負負得正」?

不對吧!
正和負不等於奇數和偶數
不能以此來說明!

引文:

openopentw 寫道:
「正正得正,正負得負,負負得正」

可以用加法來表示:

偶數=正 ,奇數=負

2+2=4(正正得正)

2+1=3(正負得負)

1+1=2(負負得正)

以上是我自己搞不清楚正數、負數時會用的方法,
很有用的,用久了就自動記住了


_________________
我不是數學高手,但我愛好數學。

 2009-02-16 21:05個人資料傳送 Email 給 j2006mouse
scottwang
Not too shy to talk



註冊日: 2007-08-26
發表數: 36


 Re: 為何「正正得正,正負得負,負負得正」?

雖然兩者(奇偶數和正負數)的意義不一樣
但其對等關係相同!
若視奇數為負值,偶數為正值
偶數+偶數=偶數--------正正得正
偶數+奇數=奇數--------正負得負
奇數+偶數=奇數--------負正得負
奇數+奇數=偶數--------負負得正
其關係恰好對應!

 2009-02-16 21:49個人資料
j2006mouse
Just can't stay away



註冊日: 2008-03-14
發表數: 121
新北市

 Re: 為何「正正得正,正負得負,負負得正」?

若以2*2=(3-1)*(3-1)=9-6+(-1)*(-1)=4 即可知(-1)*(-1) =1 即負負得正
若以2*4=(3-1)*(3+1)=9+(-1)*(+1)=8 即可知(-1)*(+1) =-1 即負正得負
若以2*2=4即正正得正






_________________
我不是數學高手,但我愛好數學。

 2009-02-17 13:52個人資料傳送 Email 給 j2006mouse
WENDYCHI
Home away from home



註冊日: 2007-08-27
發表數: 987
^^^ ( ^_^ |||) ^^^

 Re: 為何「正正得正,正負得負,負負得正」?

引文:

j2006mouse 寫道:
若以2*4=(3-1)*(3+1)=9+(-1)*(+1)=8 即可知(-1)*(+1) =-1 即負正得負


又跟我一樣用到了循環論證
(a+b)(a-b)是由負正得負推導出來的


_________________
BBBB----OOO---BBBB-----SSSS---OOO----N------N
B-----B-O-----O--B-----B-S---------O-----O---NN----N
BBBB--O------O-BBBB-----SSS---O------O--N--N--N
B-----B-O-----O--B-----B---------S-O-----O---N----NN
BBBB----OOO---BBBB----SSSS----OOO----N------N

超混的俱樂部成員

 2009-02-21 17:42個人資料
到 ( 1 | 2 下頁 )


九章數學出版社、九章數學基金會版權所有
本網頁各鍊結標題及鍊結內容歸原權利人所有
Copyright 2000 ~2004九章數學出版社、九章數學基金會
本網站內所有文字及資料版權均屬九章所有,未經書面同意之商業用途必究
This web site was made with XOOPS, a web portal system written in PHP.
XOOPS is a free software released under the GNU/GPL license.

TW XOOPS Official WebsiteFreeBSD Official WebsiteApache Official Website

Powered by XOOPS 1.3.10 © 2002 The XOOPS Project