發布者 | 內容列 | mathematical2005 Just can't stay away
註冊日: 2005-05-17 發表數: 117 China
| | 2007-08-07 11:10 | | s87009812 Just can't stay away
註冊日: 2004-07-25 發表數: 132 台北市立景美國中
| Re: 不等式 | | (4/9)(a+b+c)>max{a,b,c} 設max{a,b,c}=b 則因為4(a+c)>5b 4c>4(a-b)+4c>b 0>(b-4c)(b-c) 5bc-4c^2>b^2 但b^2>=4ac so 5bc-4c^2>4ac => 5b>4(a+c) (矛盾) 設設max{a,b,c}=/=b 則令a>=b b>=b^2/4a>4c 因此5b>=4(a+c)>5a => b>a (矛盾) 所以max{a,b,c}>=(4/9)(a+b+c) _________________ 想要得到什麼,就必須付出相同的代價...這就是煉金術中所說的"等價交換原則".
|
| 2007-08-08 14:36 | | mathematical2005 Just can't stay away
註冊日: 2005-05-17 發表數: 117 China
| Re: 不等式 | | ax2+bx+c=0有實根 => b^2-4ac≧0
(1)a=max{a,b,c}時 a^2≧b^2≧4ac => a≧4c => a/4≧c a+a+(a/4)≧a+b+c => a≧(4/9)(a+b+c)
(2)c=max{a,b,c}時,同(1)之論證方法
(3)b=max{a,b,c}時 b-(4/9)(a+b+c) =(1/9)(5b-4a-4c) =(1/9b)[5b^2-4b(a+c)] =(1/9b)[(b^2-4ac)+4b^2-4b(a+c)+4ac] =(1/9b)[(b^2-4ac)+4(b-a)(b-c)] ≧0
由(1)(2)(3)得證max{a,b,c}≧(4/9)(a+b+c)
_________________ The art of doing mathematics consists in finding that special case which contains all the germs of generality
|
| 2007-08-08 17:43 | |
|