歡迎來到 財團法人台北市九章數學教育基金會
首頁 新聞區 討論區 檔案下載
重要公告

2018 澳洲AMC數學能力檢定


2018年國際中小學數學能力檢測(IMAS)


第21屆小學數學世界邀請賽(PMWC 2018,香港)與2018國際小學數學競賽(BIMC 2018,保加利亞Burgas市)


2018青少年數學國際城市邀請賽(BIMC 2018,保加利亞Burgas市))

歷史公告

澳洲AMC數學能力檢定

2017 澳洲AMC

2016 澳洲AMC


國際中小學數學能力檢測(IMAS)

IMAS 2017

IMAS 2016


小學數學競賽

小學數學世界邀請賽與國際小學數學競賽

PMWC 2018與BIMC 2018

PMWC 2017與InIMC 2017

國際小學數學及自然科學奧林匹亞(IMSO)

IMSO 2018

IMSO 2017


中學數學競賽

青少年數學國際城市邀請賽

BIMC 2018

InIMC 2017

國際青少年數學奧林匹亞(ITMO )

ITMO 2017

ITMO 2015

國際青少年數學家會議(IYMC )

IYMC 2016


欲查詢其餘歷史公告,可利用首頁右側之關鍵字搜尋功能
目前並未有最新新聞!
主選單
· 回首頁
· 新聞區
· 討論區
· 檔案下載
· 網站連結
· 電子相薄
· 夥伴網站
· 精華文章
/  討論區主頁10
   /  國中
      /  環球城市數學競賽2007秋季賽高級卷國中組第六題
限會員
發布者內容列
孫文先
Moderator



註冊日: 2002-07-30
發表數: 1094


 環球城市數學競賽2007秋季賽高級卷國中組第六題

6. 觀眾將n枚硬幣放在桌面上排成一列,每一枚硬幣朝上或朝下可隨觀眾喜好放置。觀眾也同時任意選1至n中的一個正整數,告訴魔術師的助手,接著魔術師的助手只能恰好選擇桌面上的一個硬幣將它翻面。魔術師不知道助手翻的是哪一個硬幣,但看一看桌面上的硬幣,竟能準確地猜出觀眾所選的數。魔術師與助手事先約定一些數學策略,使得魔術師能萬無一失地猜中。
(a) 若對於某些n值魔術師能作到,試證對於2n值魔術師也能作到;(四分)
(b) 請確定所有可能的n值。(五分)


_________________
孫文先 敬上

 2007-12-16 12:41個人資料傳送 Email 給 孫文先
betaveros
Just popping in



註冊日: 2007-07-12
發表數: 3


 Re: 環球城市數學競賽2007秋季賽高級卷國中組第六題

(a)
Let us assume that the magician and the assistant can perform for a number n. Then, the assistant has a way to change all possible settings of heads/tails into a setting that the magician will interpret as any given number. In other words, the duo have a way of interpreting any setting of heads/tails as a number from 1 to n, and changing any setting to a setting that reflects any given number.

How to do it: assume the audience choose k.
1. The assistant, given the setting of 2n coins, pairs each coin up with another one, to form n pairs.
[O O] [O O] [O O] ...
2. He interprets each pair as an individual coin by the following scheme: two heads or two tails = a head, a head and a tail either way = a tail. Let's call these new n coins "p-coins."
3. He calculates the remainder of k / n, replacing 0 with n. Let this be x.
4. He decides which p-coin to flip so as to make the p-coins show x. (He doesn't flip it or anything.)
5. He calculates r: if k > n, r=1, otherwise r=0.
6. He looks at the second coin of each p-coin, and computes how many heads are among this set of n coins, not p-coins.
7. He finds the result of step 6's remainder when divided by 2. Call this s.
8. He compares r (step 5) with s (step 7). If they are equal, then flip the first coin of the step 4 p-coin. If they are different, flip the second coin of the step 4 p-coin.

How the magician interprets:

1. Change the coins into p-coins by pairing them and valuing them with two alike = head and two unalike = tail like above, and calculate the p-coins' number like above.
2. Count the heads in the second coins of each p-coin. If the number is odd, add n to the step 1 number. Otherwise, do not.

This is the number.

Proof: Clearly, the p-coins can represent a number of our choice, and they are designed so that flipping any coin in a p-coin will change the p-coin, so that 2n coins can show a number from 1 to n. Now, we want to show a number from 1 to 2n, so we have the second-coin head count. Flipping any second coin will change the count's parity, while flipping any first coin will preserve it. This bit of information can decide between x and n+x. Now, from flipping the p-coin we have narrowed the flippable coins to a first coin and a second coin. The head count narrows the flippable coins to either all first coins or all second coins, and clearly now exactly one coin will work.

Q.E.D.


_________________
This statement is false.

Conclusion: "This statement is false" is not a statement.

 2007-12-17 20:37個人資料


九章數學出版社、九章數學基金會版權所有
本網頁各鍊結標題及鍊結內容歸原權利人所有
Copyright 2000 ~2004九章數學出版社、九章數學基金會
本網站內所有文字及資料版權均屬九章所有,未經書面同意之商業用途必究
This web site was made with XOOPS, a web portal system written in PHP.
XOOPS is a free software released under the GNU/GPL license.

TW XOOPS Official WebsiteFreeBSD Official WebsiteApache Official Website

Powered by XOOPS 1.3.10 © 2002 The XOOPS Project