我又得到一個更快的解法了 ! a1=1 => 1 a2=1/3 => 1-(2/3) a3=7/9 => 1-(2/3)+(2/3)^2 a4=13/27 => 1-(2/3)+(2/3)^2-(2/3)^3 .......... a101 = 1-(2/3)+(2/3)^2-(2/3)^3+ ......+(2/3)^100 = 1+(-2/3)+(-2/3)^2+(-2/3)^3+......+(-2/3)^100 = ( 用等比級數公式即可 ) = (3/5)[1+(2/3)^101] = (3/5)[(3^101+2^101)/3^101] = (3^101+2^101)/(5*3^100)
所以 答案依然是 A = 5 , B = 3 , C = 101 _________________ 孩子們, 別再問我為何每天都穿 KAPPA 了! 
|